6 changed files with 13 additions and 709 deletions
@ -1,663 +0,0 @@
|
||||
#!/usr/bin/python |
||||
# |
||||
# aes.py: implements AES - Advanced Encryption Standard |
||||
# from the SlowAES project, http://code.google.com/p/slowaes/ |
||||
# |
||||
# Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ), |
||||
# Alex Martelli ( http://www.aleax.it ) |
||||
# |
||||
# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com ) |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 |
||||
# http://www.apache.org/licenses/ |
||||
# |
||||
from __future__ import (absolute_import, division, |
||||
print_function, unicode_literals) |
||||
from builtins import * |
||||
import math |
||||
import os |
||||
|
||||
|
||||
def append_PKCS7_padding(s): |
||||
"""return s padded to a multiple of 16-bytes by PKCS7 padding""" |
||||
numpads = 16 - (len(s) % 16) |
||||
return s + numpads * chr(numpads) |
||||
|
||||
|
||||
def strip_PKCS7_padding(s): |
||||
"""return s stripped of PKCS7 padding""" |
||||
if len(s) % 16 or not s: |
||||
raise ValueError("String of len %d can't be PCKS7-padded" % len(s)) |
||||
numpads = ord(s[-1]) |
||||
if numpads > 16: |
||||
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1]) |
||||
if not all(numpads == x for x in map(ord, s[-numpads:-1])): |
||||
raise ValueError("Invalid PKCS7 padding") |
||||
return s[:-numpads] |
||||
|
||||
|
||||
class AES(object): |
||||
# valid key sizes |
||||
keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32) |
||||
|
||||
# Rijndael S-box |
||||
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, |
||||
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, |
||||
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, |
||||
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, |
||||
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, |
||||
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, |
||||
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, |
||||
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, |
||||
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, |
||||
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, |
||||
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, |
||||
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, |
||||
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, |
||||
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, |
||||
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, |
||||
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
||||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, |
||||
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, |
||||
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, |
||||
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, |
||||
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, |
||||
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, |
||||
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, |
||||
0x54, 0xbb, 0x16] |
||||
|
||||
# Rijndael Inverted S-box |
||||
rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, |
||||
0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, |
||||
0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, |
||||
0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, |
||||
0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, |
||||
0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, |
||||
0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, |
||||
0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, |
||||
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, |
||||
0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, |
||||
0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, |
||||
0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, |
||||
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, |
||||
0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, |
||||
0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, |
||||
0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
||||
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, |
||||
0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, |
||||
0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, |
||||
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, |
||||
0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, |
||||
0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, |
||||
0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, |
||||
0x21, 0x0c, 0x7d] |
||||
|
||||
def getSBoxValue(self, num): |
||||
"""Retrieves a given S-Box Value""" |
||||
return self.sbox[num] |
||||
|
||||
def getSBoxInvert(self, num): |
||||
"""Retrieves a given Inverted S-Box Value""" |
||||
return self.rsbox[num] |
||||
|
||||
@staticmethod |
||||
def rotate(word): |
||||
""" Rijndael's key schedule rotate operation. |
||||
|
||||
Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d |
||||
Word is an char list of size 4 (32 bits overall). |
||||
""" |
||||
return word[1:] + word[:1] |
||||
|
||||
# Rijndael Rcon |
||||
Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, |
||||
0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, |
||||
0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, |
||||
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, |
||||
0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, |
||||
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, |
||||
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, |
||||
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, |
||||
0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, |
||||
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, |
||||
0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, |
||||
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, |
||||
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, |
||||
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, |
||||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, |
||||
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, |
||||
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, |
||||
0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, |
||||
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, |
||||
0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, |
||||
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, |
||||
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, |
||||
0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, |
||||
0xe8, 0xcb] |
||||
|
||||
def getRconValue(self, num): |
||||
"""Retrieves a given Rcon Value""" |
||||
return self.Rcon[num] |
||||
|
||||
def core(self, word, iteration): |
||||
"""Key schedule core.""" |
||||
# rotate the 32-bit word 8 bits to the left |
||||
word = self.rotate(word) |
||||
# apply S-Box substitution on all 4 parts of the 32-bit word |
||||
for i in range(4): |
||||
word[i] = self.getSBoxValue(word[i]) |
||||
# XOR the output of the rcon operation with i to the first part |
||||
# (leftmost) only |
||||
word[0] = word[0] ^ self.getRconValue(iteration) |
||||
return word |
||||
|
||||
def expandKey(self, key, size, expandedKeySize): |
||||
"""Rijndael's key expansion. |
||||
|
||||
Expands an 128,192,256 key into an 176,208,240 bytes key |
||||
|
||||
expandedKey is a char list of large enough size, |
||||
key is the non-expanded key. |
||||
""" |
||||
# current expanded keySize, in bytes |
||||
currentSize = 0 |
||||
rconIteration = 1 |
||||
expandedKey = [0] * expandedKeySize |
||||
|
||||
# set the 16, 24, 32 bytes of the expanded key to the input key |
||||
for j in range(size): |
||||
expandedKey[j] = key[j] |
||||
currentSize += size |
||||
|
||||
while currentSize < expandedKeySize: |
||||
# assign the previous 4 bytes to the temporary value t |
||||
t = expandedKey[currentSize - 4:currentSize] |
||||
|
||||
# every 16,24,32 bytes we apply the core schedule to t |
||||
# and increment rconIteration afterwards |
||||
if currentSize % size == 0: |
||||
t = self.core(t, rconIteration) |
||||
rconIteration += 1 |
||||
# For 256-bit keys, we add an extra sbox to the calculation |
||||
if size == self.keySize["SIZE_256"] and ( |
||||
(currentSize % size) == 16): |
||||
for l in range(4): |
||||
t[l] = self.getSBoxValue(t[l]) |
||||
|
||||
# We XOR t with the four-byte block 16,24,32 bytes before the new |
||||
# expanded key. This becomes the next four bytes in the expanded |
||||
# key. |
||||
for m in range(4): |
||||
expandedKey[currentSize] = expandedKey[currentSize - size] ^ \ |
||||
t[m] |
||||
currentSize += 1 |
||||
|
||||
return expandedKey |
||||
|
||||
@staticmethod |
||||
def addRoundKey(state, roundKey): |
||||
"""Adds (XORs) the round key to the state.""" |
||||
for i in range(16): |
||||
state[i] ^= roundKey[i] |
||||
return state |
||||
|
||||
@staticmethod |
||||
def createRoundKey(expandedKey, roundKeyPointer): |
||||
"""Create a round key. |
||||
Creates a round key from the given expanded key and the |
||||
position within the expanded key. |
||||
""" |
||||
roundKey = [0] * 16 |
||||
for i in range(4): |
||||
for j in range(4): |
||||
roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j] |
||||
return roundKey |
||||
|
||||
@staticmethod |
||||
def galois_multiplication(a, b): |
||||
"""Galois multiplication of 8 bit characters a and b.""" |
||||
p = 0 |
||||
for counter in range(8): |
||||
if b & 1: p ^= a |
||||
hi_bit_set = a & 0x80 |
||||
a <<= 1 |
||||
# keep a 8 bit |
||||
a &= 0xFF |
||||
if hi_bit_set: |
||||
a ^= 0x1b |
||||
b >>= 1 |
||||
return p |
||||
|
||||
# |
||||
# substitute all the values from the state with the value in the SBox |
||||
# using the state value as index for the SBox |
||||
# |
||||
def subBytes(self, state, isInv): |
||||
if isInv: |
||||
getter = self.getSBoxInvert |
||||
else: |
||||
getter = self.getSBoxValue |
||||
for i in range(16): |
||||
state[i] = getter(state[i]) |
||||
return state |
||||
|
||||
# iterate over the 4 rows and call shiftRow() with that row |
||||
def shiftRows(self, state, isInv): |
||||
for i in range(4): |
||||
state = self.shiftRow(state, i * 4, i, isInv) |
||||
return state |
||||
|
||||
# each iteration shifts the row to the left by 1 |
||||
@staticmethod |
||||
def shiftRow(state, statePointer, nbr, isInv): |
||||
for i in range(nbr): |
||||
if isInv: |
||||
state[statePointer:statePointer + 4] = \ |
||||
state[statePointer + 3:statePointer + 4] + \ |
||||
state[statePointer:statePointer + 3] |
||||
else: |
||||
state[statePointer:statePointer + 4] = \ |
||||
state[statePointer + 1:statePointer + 4] + \ |
||||
state[statePointer:statePointer + 1] |
||||
return state |
||||
|
||||
# galois multiplication of the 4x4 matrix |
||||
def mixColumns(self, state, isInv): |
||||
# iterate over the 4 columns |
||||
for i in range(4): |
||||
# construct one column by slicing over the 4 rows |
||||
column = state[i:i + 16:4] |
||||
# apply the mixColumn on one column |
||||
column = self.mixColumn(column, isInv) |
||||
# put the values back into the state |
||||
state[i:i + 16:4] = column |
||||
|
||||
return state |
||||
|
||||
# galois multiplication of 1 column of the 4x4 matrix |
||||
def mixColumn(self, column, isInv): |
||||
if isInv: |
||||
mult = [14, 9, 13, 11] |
||||
else: |
||||
mult = [2, 1, 1, 3] |
||||
cpy = list(column) |
||||
g = self.galois_multiplication |
||||
|
||||
column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \ |
||||
g(cpy[2], mult[2]) ^ g(cpy[1], mult[3]) |
||||
column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \ |
||||
g(cpy[3], mult[2]) ^ g(cpy[2], mult[3]) |
||||
column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \ |
||||
g(cpy[0], mult[2]) ^ g(cpy[3], mult[3]) |
||||
column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \ |
||||
g(cpy[1], mult[2]) ^ g(cpy[0], mult[3]) |
||||
return column |
||||
|
||||
# applies the 4 operations of the forward round in sequence |
||||
def aes_round(self, state, roundKey): |
||||
state = self.subBytes(state, False) |
||||
state = self.shiftRows(state, False) |
||||
state = self.mixColumns(state, False) |
||||
state = self.addRoundKey(state, roundKey) |
||||
return state |
||||
|
||||
# applies the 4 operations of the inverse round in sequence |
||||
def aes_invRound(self, state, roundKey): |
||||
state = self.shiftRows(state, True) |
||||
state = self.subBytes(state, True) |
||||
state = self.addRoundKey(state, roundKey) |
||||
state = self.mixColumns(state, True) |
||||
return state |
||||
|
||||
# Perform the initial operations, the standard round, and the final |
||||
# operations of the forward aes, creating a round key for each round |
||||
def aes_main(self, state, expandedKey, nbrRounds): |
||||
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0)) |
||||
i = 1 |
||||
while i < nbrRounds: |
||||
state = self.aes_round(state, |
||||
self.createRoundKey(expandedKey, 16 * i)) |
||||
i += 1 |
||||
state = self.subBytes(state, False) |
||||
state = self.shiftRows(state, False) |
||||
state = self.addRoundKey( |
||||
state, self.createRoundKey(expandedKey, 16 * nbrRounds)) |
||||
return state |
||||
|
||||
# Perform the initial operations, the standard round, and the final |
||||
# operations of the inverse aes, creating a round key for each round |
||||
def aes_invMain(self, state, expandedKey, nbrRounds): |
||||
state = self.addRoundKey( |
||||
state, self.createRoundKey(expandedKey, 16 * nbrRounds)) |
||||
i = nbrRounds - 1 |
||||
while i > 0: |
||||
state = self.aes_invRound(state, |
||||
self.createRoundKey(expandedKey, 16 * i)) |
||||
i -= 1 |
||||
state = self.shiftRows(state, True) |
||||
state = self.subBytes(state, True) |
||||
state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0)) |
||||
return state |
||||
|
||||
# encrypts a 128 bit input block against the given key of size specified |
||||
def encrypt(self, iput, key, size): |
||||
output = [0] * 16 |
||||
# the number of rounds |
||||
nbrRounds = 0 |
||||
# the 128 bit block to encode |
||||
block = [0] * 16 |
||||
# set the number of rounds |
||||
if size == self.keySize["SIZE_128"]: |
||||
nbrRounds = 10 |
||||
elif size == self.keySize["SIZE_192"]: |
||||
nbrRounds = 12 |
||||
elif size == self.keySize["SIZE_256"]: |
||||
nbrRounds = 14 |
||||
else: |
||||
return None |
||||
|
||||
# the expanded keySize |
||||
expandedKeySize = 16 * (nbrRounds + 1) |
||||
|
||||
# Set the block values, for the block: |
||||
# a0,0 a0,1 a0,2 a0,3 |
||||
# a1,0 a1,1 a1,2 a1,3 |
||||
# a2,0 a2,1 a2,2 a2,3 |
||||
# a3,0 a3,1 a3,2 a3,3 |
||||
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 |
||||
# |
||||
# iterate over the columns |
||||
for i in range(4): |
||||
# iterate over the rows |
||||
for j in range(4): |
||||
block[(i + (j * 4))] = iput[(i * 4) + j] |
||||
|
||||
# expand the key into an 176, 208, 240 bytes key |
||||
# the expanded key |
||||
expandedKey = self.expandKey(key, size, expandedKeySize) |
||||
|
||||
# encrypt the block using the expandedKey |
||||
block = self.aes_main(block, expandedKey, nbrRounds) |
||||
|
||||
# unmap the block again into the output |
||||
for k in range(4): |
||||
# iterate over the rows |
||||
for l in range(4): |
||||
output[(k * 4) + l] = block[(k + (l * 4))] |
||||
return output |
||||
|
||||
# decrypts a 128 bit input block against the given key of size specified |
||||
def decrypt(self, iput, key, size): |
||||
output = [0] * 16 |
||||
# the number of rounds |
||||
nbrRounds = 0 |
||||
# the 128 bit block to decode |
||||
block = [0] * 16 |
||||
# set the number of rounds |
||||
if size == self.keySize["SIZE_128"]: |
||||
nbrRounds = 10 |
||||
elif size == self.keySize["SIZE_192"]: |
||||
nbrRounds = 12 |
||||
elif size == self.keySize["SIZE_256"]: |
||||
nbrRounds = 14 |
||||
else: |
||||
return None |
||||
|
||||
# the expanded keySize |
||||
expandedKeySize = 16 * (nbrRounds + 1) |
||||
|
||||
# Set the block values, for the block: |
||||
# a0,0 a0,1 a0,2 a0,3 |
||||
# a1,0 a1,1 a1,2 a1,3 |
||||
# a2,0 a2,1 a2,2 a2,3 |
||||
# a3,0 a3,1 a3,2 a3,3 |
||||
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 |
||||
|
||||
# iterate over the columns |
||||
for i in range(4): |
||||
# iterate over the rows |
||||
for j in range(4): |
||||
block[(i + (j * 4))] = iput[(i * 4) + j] |
||||
# expand the key into an 176, 208, 240 bytes key |
||||
expandedKey = self.expandKey(key, size, expandedKeySize) |
||||
# decrypt the block using the expandedKey |
||||
block = self.aes_invMain(block, expandedKey, nbrRounds) |
||||
# unmap the block again into the output |
||||
for k in range(4): |
||||
# iterate over the rows |
||||
for l in range(4): |
||||
output[(k * 4) + l] = block[(k + (l * 4))] |
||||
return output |
||||
|
||||
|
||||
class AESModeOfOperation(object): |
||||
aes = AES() |
||||
|
||||
# structure of supported modes of operation |
||||
modeOfOperation = dict(OFB=0, CFB=1, CBC=2) |
||||
|
||||
# converts a 16 character string into a number array |
||||
def convertString(self, string, start, end, mode): |
||||
if end - start > 16: end = start + 16 |
||||
if mode == self.modeOfOperation["CBC"]: |
||||
ar = [0] * 16 |
||||
else: |
||||
ar = [] |
||||
|
||||
i = start |
||||
j = 0 |
||||
while len(ar) < end - start: |
||||
ar.append(0) |
||||
while i < end: |
||||
ar[j] = ord(string[i]) |
||||
j += 1 |
||||
i += 1 |
||||
return ar |
||||
|
||||
# Mode of Operation Encryption |
||||
# stringIn - Input String |
||||
# mode - mode of type modeOfOperation |
||||
# hexKey - a hex key of the bit length size |
||||
# size - the bit length of the key |
||||
# hexIV - the 128 bit hex Initilization Vector |
||||
def encrypt(self, stringIn, mode, key, size, IV): |
||||
if len(key) % size: |
||||
return None |
||||
if len(IV) % 16: |
||||
return None |
||||
# the AES input/output |
||||
plaintext = [] |
||||
iput = [0] * 16 |
||||
output = [] |
||||
ciphertext = [0] * 16 |
||||
# the output cipher string |
||||
cipherOut = [] |
||||
# char firstRound |
||||
firstRound = True |
||||
if stringIn is not None: |
||||
for j in range(int(math.ceil(float(len(stringIn)) / 16))): |
||||
start = j * 16 |
||||
end = j * 16 + 16 |
||||
if end > len(stringIn): |
||||
end = len(stringIn) |
||||
plaintext = self.convertString(stringIn, start, end, mode) |
||||
# print 'PT@%s:%s' % (j, plaintext) |
||||
if mode == self.modeOfOperation["CFB"]: |
||||
if firstRound: |
||||
output = self.aes.encrypt(IV, key, size) |
||||
firstRound = False |
||||
else: |
||||
output = self.aes.encrypt(iput, key, size) |
||||
for i in range(16): |
||||
if len(plaintext) - 1 < i: |
||||
ciphertext[i] = 0 ^ output[i] |
||||
elif len(output) - 1 < i: |
||||
ciphertext[i] = plaintext[i] ^ 0 |
||||
elif len(plaintext) - 1 < i and len(output) < i: |
||||
ciphertext[i] = 0 ^ 0 |
||||
else: |
||||
ciphertext[i] = plaintext[i] ^ output[i] |
||||
for k in range(end - start): |
||||
cipherOut.append(ciphertext[k]) |
||||
iput = ciphertext |
||||
elif mode == self.modeOfOperation["OFB"]: |
||||
if firstRound: |
||||
output = self.aes.encrypt(IV, key, size) |
||||
firstRound = False |
||||
else: |
||||
output = self.aes.encrypt(iput, key, size) |
||||
for i in range(16): |
||||
if len(plaintext) - 1 < i: |
||||
ciphertext[i] = 0 ^ output[i] |
||||
elif len(output) - 1 < i: |
||||
ciphertext[i] = plaintext[i] ^ 0 |
||||
elif len(plaintext) - 1 < i and len(output) < i: |
||||
ciphertext[i] = 0 ^ 0 |
||||
else: |
||||
ciphertext[i] = plaintext[i] ^ output[i] |
||||
for k in range(end - start): |
||||
cipherOut.append(ciphertext[k]) |
||||
iput = output |
||||
elif mode == self.modeOfOperation["CBC"]: |
||||
for i in range(16): |
||||
if firstRound: |
||||
iput[i] = plaintext[i] ^ IV[i] |
||||
else: |
||||
iput[i] = plaintext[i] ^ ciphertext[i] |
||||
# print 'IP@%s:%s' % (j, iput) |
||||
firstRound = False |
||||
ciphertext = self.aes.encrypt(iput, key, size) |
||||
# always 16 bytes because of the padding for CBC |
||||
for k in range(16): |
||||
cipherOut.append(ciphertext[k]) |
||||
return mode, len(stringIn), cipherOut |
||||
|
||||
# Mode of Operation Decryption |
||||
# cipherIn - Encrypted String |
||||
# originalsize - The unencrypted string length - required for CBC |
||||
# mode - mode of type modeOfOperation |
||||
# key - a number array of the bit length size |
||||
# size - the bit length of the key |
||||
# IV - the 128 bit number array Initilization Vector |
||||
def decrypt(self, cipherIn, originalsize, mode, key, size, IV): |
||||
# cipherIn = unescCtrlChars(cipherIn) |
||||
if len(key) % size: |
||||
return None |
||||
if len(IV) % 16: |
||||
return None |
||||
# the AES input/output |
||||
ciphertext = [] |
||||
iput = [] |
||||
output = [] |
||||
plaintext = [0] * 16 |
||||
# the output plain text string |
||||
stringOut = '' |
||||
# char firstRound |
||||
firstRound = True |
||||
if cipherIn is not None: |
||||
for j in range(int(math.ceil(float(len(cipherIn)) / 16))): |
||||
start = j * 16 |
||||
end = j * 16 + 16 |
||||
if j * 16 + 16 > len(cipherIn): |
||||
end = len(cipherIn) |
||||
ciphertext = cipherIn[start:end] |
||||
if mode == self.modeOfOperation["CFB"]: |
||||
if firstRound: |
||||
output = self.aes.encrypt(IV, key, size) |
||||
firstRound = False |
||||
else: |
||||
output = self.aes.encrypt(iput, key, size) |
||||
for i in range(16): |
||||
if len(output) - 1 < i: |
||||
plaintext[i] = 0 ^ ciphertext[i] |
||||
elif len(ciphertext) - 1 < i: |
||||
plaintext[i] = output[i] ^ 0 |
||||
elif len(output) - 1 < i and len(ciphertext) < i: |
||||
plaintext[i] = 0 ^ 0 |
||||
else: |
||||
plaintext[i] = output[i] ^ ciphertext[i] |
||||
for k in range(end - start): |
||||
stringOut += chr(plaintext[k]) |
||||
iput = ciphertext |
||||
elif mode == self.modeOfOperation["OFB"]: |
||||
if firstRound: |
||||
output = self.aes.encrypt(IV, key, size) |
||||
firstRound = False |
||||
else: |
||||
output = self.aes.encrypt(iput, key, size) |
||||
for i in range(16): |
||||
if len(output) - 1 < i: |
||||
plaintext[i] = 0 ^ ciphertext[i] |
||||
elif len(ciphertext) - 1 < i: |
||||
plaintext[i] = output[i] ^ 0 |
||||
elif len(output) - 1 < i and len(ciphertext) < i: |
||||
plaintext[i] = 0 ^ 0 |
||||
else: |
||||
plaintext[i] = output[i] ^ ciphertext[i] |
||||
for k in range(end - start): |
||||
stringOut += chr(plaintext[k]) |
||||
iput = output |
||||
elif mode == self.modeOfOperation["CBC"]: |
||||
output = self.aes.decrypt(ciphertext, key, size) |
||||
for i in range(16): |
||||
if firstRound: |
||||
plaintext[i] = IV[i] ^ output[i] |
||||
else: |
||||
plaintext[i] = iput[i] ^ output[i] |
||||
firstRound = False |
||||
if originalsize is not None and originalsize < end: |
||||
for k in range(originalsize - start): |
||||
stringOut += chr(plaintext[k]) |
||||
else: |
||||
for k in range(end - start): |
||||
stringOut += chr(plaintext[k]) |
||||
iput = ciphertext |
||||
return stringOut |
||||
|
||||
|
||||
def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]): |
||||
"""encrypt `data` using `key` |
||||
|
||||
`key` should be a string of bytes. |
||||
|
||||
returned cipher is a string of bytes prepended with the initialization |
||||
vector. |
||||
|
||||
""" |
||||
key = map(ord, key) |
||||
if mode == AESModeOfOperation.modeOfOperation["CBC"]: |
||||
data = append_PKCS7_padding(data) |
||||
keysize = len(key) |
||||
assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize |
||||
# create a new iv using random data |
||||
iv = [ord(i) for i in os.urandom(16)] |
||||
moo = AESModeOfOperation() |
||||
(mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv) |
||||
# With padding, the original length does not need to be known. It's a bad |
||||
# idea to store the original message length. |
||||
# prepend the iv. |
||||
return ''.join(map(chr, iv)) + ''.join(map(chr, ciph)) |
||||
|
||||
|
||||
def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]): |
||||
"""decrypt `data` using `key` |
||||
|
||||
`key` should be a string of bytes. |
||||
|
||||
`data` should have the initialization vector prepended as a string of |
||||
ordinal values. |
||||
|
||||
""" |
||||
|
||||
key = map(ord, key) |
||||
keysize = len(key) |
||||
assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize |
||||
# iv is first 16 bytes |
||||
iv = map(ord, data[:16]) |
||||
data = map(ord, data[16:]) |
||||
moo = AESModeOfOperation() |
||||
decr = moo.decrypt(data, None, mode, key, keysize, iv) |
||||
if mode == AESModeOfOperation.modeOfOperation["CBC"]: |
||||
decr = strip_PKCS7_padding(decr) |
||||
return decr |
||||
|
||||
@ -1,36 +0,0 @@
|
||||
from __future__ import (absolute_import, division, |
||||
print_function, unicode_literals) |
||||
from builtins import * # noqa: F401 |
||||
import jmclient.slowaes as sa |
||||
"""test general AES operation; probably not needed. |
||||
Not included in coverage, but should be included in suite.""" |
||||
import os |
||||
import sys |
||||
import pytest |
||||
|
||||
def test_pkcs7_bad_padding(): |
||||
#used in seed decryption; check that it throws |
||||
#if wrongly padded (this caused a REAL bug before!) |
||||
bad_padded = [b'\x07'*14, b'\x07'*31, b'\x07'*31+b'\x11', b'\x07'*31+b'\x00', |
||||
b'\x07'*14+b'\x01\x02'] |
||||
for b in bad_padded: |
||||
with pytest.raises(Exception) as e_info: |
||||
fake_unpadded = sa.strip_PKCS7_padding(b) |
||||
|
||||
def test_aes(): |
||||
cleartext = "This is a test!" |
||||
iv = [103, 35, 148, 239, 76, 213, 47, 118, 255, 222, 123, 176, 106, 134, 98, |
||||
92] |
||||
for ks in [16,24,32]: |
||||
for mode in ["CFB", "CBC", "OFB"]: |
||||
if sys.version_info >= (3,0): |
||||
cypherkey = list(map(int, os.urandom(ks))) |
||||
else: |
||||
cypherkey = list(map(ord, os.urandom(ks))) |
||||
moo = sa.AESModeOfOperation() |
||||
mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation[mode], |
||||
cypherkey, ks, |
||||
iv) |
||||
decr = moo.decrypt(ciph, orig_len, mode, cypherkey, |
||||
ks, iv) |
||||
assert decr==cleartext |
||||
Loading…
Reference in new issue