# The following functions are based on the BIP 340 reference implementation: # https://github.com/bitcoin/bips/blob/master/bip-0340/reference.py from .secp256k1 import FE, GE, G from .util import int_from_bytes, bytes_from_int, xor_bytes, tagged_hash def pubkey_gen(seckey: bytes) -> bytes: d0 = int_from_bytes(seckey) if not (1 <= d0 <= GE.ORDER - 1): raise ValueError("The secret key must be an integer in the range 1..n-1.") P = d0 * G assert not P.infinity return P.to_bytes_xonly() def schnorr_sign( msg: bytes, seckey: bytes, aux_rand: bytes, tag_prefix: str = "BIP0340" ) -> bytes: d0 = int_from_bytes(seckey) if not (1 <= d0 <= GE.ORDER - 1): raise ValueError("The secret key must be an integer in the range 1..n-1.") if len(aux_rand) != 32: raise ValueError("aux_rand must be 32 bytes instead of %i." % len(aux_rand)) P = d0 * G assert not P.infinity d = d0 if P.has_even_y() else GE.ORDER - d0 t = xor_bytes(bytes_from_int(d), tagged_hash(tag_prefix + "/aux", aux_rand)) k0 = ( int_from_bytes(tagged_hash(tag_prefix + "/nonce", t + P.to_bytes_xonly() + msg)) % GE.ORDER ) if k0 == 0: raise RuntimeError("Failure. This happens only with negligible probability.") R = k0 * G assert not R.infinity k = k0 if R.has_even_y() else GE.ORDER - k0 e = ( int_from_bytes( tagged_hash( tag_prefix + "/challenge", R.to_bytes_xonly() + P.to_bytes_xonly() + msg ) ) % GE.ORDER ) sig = R.to_bytes_xonly() + bytes_from_int((k + e * d) % GE.ORDER) assert schnorr_verify(msg, P.to_bytes_xonly(), sig, tag_prefix=tag_prefix) return sig def schnorr_verify( msg: bytes, pubkey: bytes, sig: bytes, tag_prefix: str = "BIP0340" ) -> bool: if len(pubkey) != 32: raise ValueError("The public key must be a 32-byte array.") if len(sig) != 64: raise ValueError("The signature must be a 64-byte array.") try: P = GE.from_bytes_xonly(pubkey) except ValueError: return False r = int_from_bytes(sig[0:32]) s = int_from_bytes(sig[32:64]) if (r >= FE.SIZE) or (s >= GE.ORDER): return False e = ( int_from_bytes(tagged_hash(tag_prefix + "/challenge", sig[0:32] + pubkey + msg)) % GE.ORDER ) R = s * G - e * P if R.infinity or (not R.has_even_y()) or (R.x != r): return False return True