You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
840 lines
25 KiB
840 lines
25 KiB
# -*- coding: utf-8 -*- |
|
#!/usr/bin/env python |
|
# |
|
# Electrum - lightweight Bitcoin client |
|
# Copyright (C) 2011 thomasv@gitorious |
|
# |
|
# Permission is hereby granted, free of charge, to any person |
|
# obtaining a copy of this software and associated documentation files |
|
# (the "Software"), to deal in the Software without restriction, |
|
# including without limitation the rights to use, copy, modify, merge, |
|
# publish, distribute, sublicense, and/or sell copies of the Software, |
|
# and to permit persons to whom the Software is furnished to do so, |
|
# subject to the following conditions: |
|
# |
|
# The above copyright notice and this permission notice shall be |
|
# included in all copies or substantial portions of the Software. |
|
# |
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
# SOFTWARE. |
|
|
|
import hashlib |
|
import base64 |
|
import os |
|
import re |
|
import hmac |
|
|
|
import version |
|
from util import print_error, InvalidPassword |
|
|
|
import ecdsa |
|
import pyaes |
|
|
|
# Bitcoin network constants |
|
TESTNET = False |
|
ADDRTYPE_P2PKH = 0 |
|
ADDRTYPE_P2SH = 5 |
|
ADDRTYPE_P2WPKH = 6 |
|
XPRV_HEADER = 0x0488ade4 |
|
XPUB_HEADER = 0x0488b21e |
|
HEADERS_URL = "https://headers.electrum.org/blockchain_headers" |
|
|
|
def set_testnet(): |
|
global ADDRTYPE_P2PKH, ADDRTYPE_P2SH, ADDRTYPE_P2WPKH |
|
global XPRV_HEADER, XPUB_HEADER |
|
global TESTNET, HEADERS_URL |
|
TESTNET = True |
|
ADDRTYPE_P2PKH = 111 |
|
ADDRTYPE_P2SH = 196 |
|
ADDRTYPE_P2WPKH = 3 |
|
XPRV_HEADER = 0x04358394 |
|
XPUB_HEADER = 0x043587cf |
|
HEADERS_URL = "https://headers.electrum.org/testnet_headers" |
|
|
|
|
|
|
|
|
|
################################## transactions |
|
|
|
FEE_STEP = 10000 |
|
MAX_FEE_RATE = 100000 |
|
FEE_TARGETS = [25, 10, 5, 2] |
|
|
|
COINBASE_MATURITY = 100 |
|
COIN = 100000000 |
|
|
|
# supported types of transction outputs |
|
TYPE_ADDRESS = 0 |
|
TYPE_PUBKEY = 1 |
|
TYPE_SCRIPT = 2 |
|
|
|
|
|
# AES encryption |
|
def aes_encrypt_with_iv(key, iv, data): |
|
aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) |
|
aes = pyaes.Encrypter(aes_cbc) |
|
e = aes.feed(data) + aes.feed() # empty aes.feed() appends pkcs padding |
|
return e |
|
|
|
def aes_decrypt_with_iv(key, iv, data): |
|
aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) |
|
aes = pyaes.Decrypter(aes_cbc) |
|
s = aes.feed(data) + aes.feed() # empty aes.feed() strips pkcs padding |
|
return s |
|
|
|
def EncodeAES(secret, s): |
|
iv = bytes(os.urandom(16)) |
|
ct = aes_encrypt_with_iv(secret, iv, s) |
|
e = iv + ct |
|
return base64.b64encode(e) |
|
|
|
def DecodeAES(secret, e): |
|
e = bytes(base64.b64decode(e)) |
|
iv, e = e[:16], e[16:] |
|
s = aes_decrypt_with_iv(secret, iv, e) |
|
return s |
|
|
|
def pw_encode(s, password): |
|
if password: |
|
secret = Hash(password) |
|
return EncodeAES(secret, s.encode("utf8")) |
|
else: |
|
return s |
|
|
|
def pw_decode(s, password): |
|
if password is not None: |
|
secret = Hash(password) |
|
try: |
|
d = DecodeAES(secret, s).decode("utf8") |
|
except Exception: |
|
raise InvalidPassword() |
|
return d |
|
else: |
|
return s |
|
|
|
|
|
def rev_hex(s): |
|
return s.decode('hex')[::-1].encode('hex') |
|
|
|
|
|
def int_to_hex(i, length=1): |
|
s = hex(i)[2:].rstrip('L') |
|
s = "0"*(2*length - len(s)) + s |
|
return rev_hex(s) |
|
|
|
|
|
def var_int(i): |
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
if i<0xfd: |
|
return int_to_hex(i) |
|
elif i<=0xffff: |
|
return "fd"+int_to_hex(i,2) |
|
elif i<=0xffffffff: |
|
return "fe"+int_to_hex(i,4) |
|
else: |
|
return "ff"+int_to_hex(i,8) |
|
|
|
|
|
def op_push(i): |
|
if i<0x4c: |
|
return int_to_hex(i) |
|
elif i<0xff: |
|
return '4c' + int_to_hex(i) |
|
elif i<0xffff: |
|
return '4d' + int_to_hex(i,2) |
|
else: |
|
return '4e' + int_to_hex(i,4) |
|
|
|
|
|
def sha256(x): |
|
return hashlib.sha256(x).digest() |
|
|
|
|
|
def Hash(x): |
|
if type(x) is unicode: x=x.encode('utf-8') |
|
return sha256(sha256(x)) |
|
|
|
hash_encode = lambda x: x[::-1].encode('hex') |
|
hash_decode = lambda x: x.decode('hex')[::-1] |
|
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest() |
|
|
|
def is_new_seed(x, prefix=version.SEED_PREFIX): |
|
import mnemonic |
|
x = mnemonic.normalize_text(x) |
|
s = hmac_sha_512("Seed version", x.encode('utf8')).encode('hex') |
|
return s.startswith(prefix) |
|
|
|
|
|
def is_old_seed(seed): |
|
import old_mnemonic |
|
words = seed.strip().split() |
|
try: |
|
old_mnemonic.mn_decode(words) |
|
uses_electrum_words = True |
|
except Exception: |
|
uses_electrum_words = False |
|
try: |
|
seed.decode('hex') |
|
is_hex = (len(seed) == 32 or len(seed) == 64) |
|
except Exception: |
|
is_hex = False |
|
return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) |
|
|
|
|
|
def seed_type(x): |
|
if is_old_seed(x): |
|
return 'old' |
|
elif is_new_seed(x): |
|
return 'standard' |
|
elif TESTNET and is_new_seed(x, version.SEED_PREFIX_SW): |
|
return 'segwit' |
|
elif is_new_seed(x, version.SEED_PREFIX_2FA): |
|
return '2fa' |
|
return '' |
|
|
|
is_seed = lambda x: bool(seed_type(x)) |
|
|
|
# pywallet openssl private key implementation |
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False): |
|
# public keys are 65 bytes long (520 bits) |
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate |
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed |
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd |
|
if compressed: |
|
if pubkey.point.y() & 1: |
|
key = '03' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '02' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '04' + \ |
|
'%064x' % pubkey.point.x() + \ |
|
'%064x' % pubkey.point.y() |
|
|
|
return key.decode('hex') |
|
|
|
# end pywallet openssl private key implementation |
|
|
|
|
|
|
|
############ functions from pywallet ##################### |
|
|
|
def hash_160(public_key): |
|
if 'ANDROID_DATA' in os.environ: |
|
from Crypto.Hash import RIPEMD |
|
md = RIPEMD.new() |
|
else: |
|
md = hashlib.new('ripemd') |
|
md.update(sha256(public_key)) |
|
return md.digest() |
|
|
|
def hash_160_to_bc_address(h160, addrtype, witness_program_version=1): |
|
s = chr(addrtype) |
|
if addrtype == ADDRTYPE_P2WPKH: |
|
s += chr(witness_program_version) + chr(0) |
|
s += h160 |
|
return base_encode(s+Hash(s)[0:4], base=58) |
|
|
|
def bc_address_to_hash_160(addr): |
|
bytes = base_decode(addr, 25, base=58) |
|
return ord(bytes[0]), bytes[1:21] |
|
|
|
def hash160_to_p2pkh(h160): |
|
return hash_160_to_bc_address(h160, ADDRTYPE_P2PKH) |
|
|
|
def hash160_to_p2sh(h160): |
|
return hash_160_to_bc_address(h160, ADDRTYPE_P2SH) |
|
|
|
def public_key_to_p2pkh(public_key): |
|
return hash160_to_p2pkh(hash_160(public_key)) |
|
|
|
def public_key_to_p2wpkh(public_key): |
|
return hash160_to_bc_address(hash_160(public_key), ADDRTYPE_P2WPKH) |
|
|
|
|
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' |
|
assert len(__b58chars) == 58 |
|
|
|
__b43chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' |
|
assert len(__b43chars) == 43 |
|
|
|
|
|
def base_encode(v, base): |
|
""" encode v, which is a string of bytes, to base58.""" |
|
if base == 58: |
|
chars = __b58chars |
|
elif base == 43: |
|
chars = __b43chars |
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += (256**i) * ord(c) |
|
result = '' |
|
while long_value >= base: |
|
div, mod = divmod(long_value, base) |
|
result = chars[mod] + result |
|
long_value = div |
|
result = chars[long_value] + result |
|
# Bitcoin does a little leading-zero-compression: |
|
# leading 0-bytes in the input become leading-1s |
|
nPad = 0 |
|
for c in v: |
|
if c == '\0': nPad += 1 |
|
else: break |
|
return (chars[0]*nPad) + result |
|
|
|
|
|
def base_decode(v, length, base): |
|
""" decode v into a string of len bytes.""" |
|
if base == 58: |
|
chars = __b58chars |
|
elif base == 43: |
|
chars = __b43chars |
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += chars.find(c) * (base**i) |
|
result = '' |
|
while long_value >= 256: |
|
div, mod = divmod(long_value, 256) |
|
result = chr(mod) + result |
|
long_value = div |
|
result = chr(long_value) + result |
|
nPad = 0 |
|
for c in v: |
|
if c == chars[0]: nPad += 1 |
|
else: break |
|
result = chr(0)*nPad + result |
|
if length is not None and len(result) != length: |
|
return None |
|
return result |
|
|
|
|
|
def EncodeBase58Check(vchIn): |
|
hash = Hash(vchIn) |
|
return base_encode(vchIn + hash[0:4], base=58) |
|
|
|
|
|
def DecodeBase58Check(psz): |
|
vchRet = base_decode(psz, None, base=58) |
|
key = vchRet[0:-4] |
|
csum = vchRet[-4:] |
|
hash = Hash(key) |
|
cs32 = hash[0:4] |
|
if cs32 != csum: |
|
return None |
|
else: |
|
return key |
|
|
|
|
|
def PrivKeyToSecret(privkey): |
|
return privkey[9:9+32] |
|
|
|
|
|
def SecretToASecret(secret, compressed=False): |
|
addrtype = ADDRTYPE_P2PKH |
|
vchIn = chr((addrtype+128)&255) + secret |
|
if compressed: vchIn += '\01' |
|
return EncodeBase58Check(vchIn) |
|
|
|
def ASecretToSecret(key): |
|
addrtype = ADDRTYPE_P2PKH |
|
vch = DecodeBase58Check(key) |
|
if vch and vch[0] == chr((addrtype+128)&255): |
|
return vch[1:] |
|
elif is_minikey(key): |
|
return minikey_to_private_key(key) |
|
else: |
|
return False |
|
|
|
def regenerate_key(sec): |
|
b = ASecretToSecret(sec) |
|
if not b: |
|
return False |
|
b = b[0:32] |
|
return EC_KEY(b) |
|
|
|
|
|
def GetPubKey(pubkey, compressed=False): |
|
return i2o_ECPublicKey(pubkey, compressed) |
|
|
|
|
|
def GetSecret(pkey): |
|
return ('%064x' % pkey.secret).decode('hex') |
|
|
|
|
|
def is_compressed(sec): |
|
b = ASecretToSecret(sec) |
|
return len(b) == 33 |
|
|
|
|
|
def public_key_from_private_key(sec): |
|
# rebuild public key from private key, compressed or uncompressed |
|
pkey = regenerate_key(sec) |
|
assert pkey |
|
compressed = is_compressed(sec) |
|
public_key = GetPubKey(pkey.pubkey, compressed) |
|
return public_key.encode('hex') |
|
|
|
|
|
def address_from_private_key(sec): |
|
public_key = public_key_from_private_key(sec) |
|
address = public_key_to_p2pkh(public_key.decode('hex')) |
|
return address |
|
|
|
|
|
def is_valid(addr): |
|
return is_address(addr) |
|
|
|
|
|
def is_address(addr): |
|
try: |
|
addrtype, h = bc_address_to_hash_160(addr) |
|
except Exception: |
|
return False |
|
if addrtype not in [ADDRTYPE_P2PKH, ADDRTYPE_P2SH]: |
|
return False |
|
return addr == hash_160_to_bc_address(h, addrtype) |
|
|
|
def is_p2pkh(addr): |
|
if is_address(addr): |
|
addrtype, h = bc_address_to_hash_160(addr) |
|
return addrtype == ADDRTYPE_P2PKH |
|
|
|
def is_p2sh(addr): |
|
if is_address(addr): |
|
addrtype, h = bc_address_to_hash_160(addr) |
|
return addrtype == ADDRTYPE_P2SH |
|
|
|
def is_private_key(key): |
|
try: |
|
k = ASecretToSecret(key) |
|
return k is not False |
|
except: |
|
return False |
|
|
|
|
|
########### end pywallet functions ####################### |
|
|
|
def is_minikey(text): |
|
# Minikeys are typically 22 or 30 characters, but this routine |
|
# permits any length of 20 or more provided the minikey is valid. |
|
# A valid minikey must begin with an 'S', be in base58, and when |
|
# suffixed with '?' have its SHA256 hash begin with a zero byte. |
|
# They are widely used in Casascius physical bitoins. |
|
return (len(text) >= 20 and text[0] == 'S' |
|
and all(c in __b58chars for c in text) |
|
and ord(sha256(text + '?')[0]) == 0) |
|
|
|
def minikey_to_private_key(text): |
|
return sha256(text) |
|
|
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 |
|
from ecdsa.curves import SECP256k1 |
|
from ecdsa.ellipticcurve import Point |
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
def msg_magic(message): |
|
varint = var_int(len(message)) |
|
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)]) |
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message |
|
|
|
|
|
def verify_message(address, sig, message): |
|
try: |
|
public_key, compressed = pubkey_from_signature(sig, message) |
|
# check public key using the address |
|
pubkey = point_to_ser(public_key.pubkey.point, compressed) |
|
addr = public_key_to_p2pkh(pubkey) |
|
if address != addr: |
|
raise Exception("Bad signature") |
|
# check message |
|
h = Hash(msg_magic(message)) |
|
public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) |
|
return True |
|
except Exception as e: |
|
print_error("Verification error: {0}".format(e)) |
|
return False |
|
|
|
|
|
def encrypt_message(message, pubkey): |
|
return EC_KEY.encrypt_message(message, pubkey.decode('hex')) |
|
|
|
|
|
def chunks(l, n): |
|
return [l[i:i+n] for i in xrange(0, len(l), n)] |
|
|
|
|
|
def ECC_YfromX(x,curved=curve_secp256k1, odd=True): |
|
_p = curved.p() |
|
_a = curved.a() |
|
_b = curved.b() |
|
for offset in range(128): |
|
Mx = x + offset |
|
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p |
|
My = pow(My2, (_p+1)/4, _p ) |
|
|
|
if curved.contains_point(Mx,My): |
|
if odd == bool(My&1): |
|
return [My,offset] |
|
return [_p-My,offset] |
|
raise Exception('ECC_YfromX: No Y found') |
|
|
|
|
|
def negative_point(P): |
|
return Point( P.curve(), P.x(), -P.y(), P.order() ) |
|
|
|
|
|
def point_to_ser(P, comp=True ): |
|
if comp: |
|
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex') |
|
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex') |
|
|
|
|
|
def ser_to_point(Aser): |
|
curve = curve_secp256k1 |
|
generator = generator_secp256k1 |
|
_r = generator.order() |
|
assert Aser[0] in ['\x02','\x03','\x04'] |
|
if Aser[0] == '\x04': |
|
return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r ) |
|
Mx = string_to_number(Aser[1:]) |
|
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r ) |
|
|
|
|
|
|
|
class MyVerifyingKey(ecdsa.VerifyingKey): |
|
@classmethod |
|
def from_signature(klass, sig, recid, h, curve): |
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """ |
|
from ecdsa import util, numbertheory |
|
import msqr |
|
curveFp = curve.curve |
|
G = curve.generator |
|
order = G.order() |
|
# extract r,s from signature |
|
r, s = util.sigdecode_string(sig, order) |
|
# 1.1 |
|
x = r + (recid/2) * order |
|
# 1.3 |
|
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p() |
|
beta = msqr.modular_sqrt(alpha, curveFp.p()) |
|
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta |
|
# 1.4 the constructor checks that nR is at infinity |
|
R = Point(curveFp, x, y, order) |
|
# 1.5 compute e from message: |
|
e = string_to_number(h) |
|
minus_e = -e % order |
|
# 1.6 compute Q = r^-1 (sR - eG) |
|
inv_r = numbertheory.inverse_mod(r,order) |
|
Q = inv_r * ( s * R + minus_e * G ) |
|
return klass.from_public_point( Q, curve ) |
|
|
|
|
|
def pubkey_from_signature(sig, message): |
|
if len(sig) != 65: |
|
raise Exception("Wrong encoding") |
|
nV = ord(sig[0]) |
|
if nV < 27 or nV >= 35: |
|
raise Exception("Bad encoding") |
|
if nV >= 31: |
|
compressed = True |
|
nV -= 4 |
|
else: |
|
compressed = False |
|
recid = nV - 27 |
|
h = Hash(msg_magic(message)) |
|
return MyVerifyingKey.from_signature(sig[1:], recid, h, curve = SECP256k1), compressed |
|
|
|
|
|
class MySigningKey(ecdsa.SigningKey): |
|
"""Enforce low S values in signatures""" |
|
|
|
def sign_number(self, number, entropy=None, k=None): |
|
curve = SECP256k1 |
|
G = curve.generator |
|
order = G.order() |
|
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k) |
|
if s > order/2: |
|
s = order - s |
|
return r, s |
|
|
|
|
|
class EC_KEY(object): |
|
|
|
def __init__( self, k ): |
|
secret = string_to_number(k) |
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) |
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) |
|
self.secret = secret |
|
|
|
def get_public_key(self, compressed=True): |
|
return point_to_ser(self.pubkey.point, compressed).encode('hex') |
|
|
|
def sign(self, msg_hash): |
|
private_key = MySigningKey.from_secret_exponent(self.secret, curve = SECP256k1) |
|
public_key = private_key.get_verifying_key() |
|
signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string) |
|
assert public_key.verify_digest(signature, msg_hash, sigdecode = ecdsa.util.sigdecode_string) |
|
return signature |
|
|
|
def sign_message(self, message, is_compressed): |
|
signature = self.sign(Hash(msg_magic(message))) |
|
for i in range(4): |
|
sig = chr(27 + i + (4 if is_compressed else 0)) + signature |
|
try: |
|
self.verify_message(sig, message) |
|
return sig |
|
except Exception: |
|
continue |
|
else: |
|
raise Exception("error: cannot sign message") |
|
|
|
|
|
def verify_message(self, sig, message): |
|
public_key, compressed = pubkey_from_signature(sig, message) |
|
# check public key |
|
if point_to_ser(public_key.pubkey.point, compressed) != point_to_ser(self.pubkey.point, compressed): |
|
raise Exception("Bad signature") |
|
# check message |
|
h = Hash(msg_magic(message)) |
|
public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) |
|
|
|
|
|
# ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac |
|
|
|
@classmethod |
|
def encrypt_message(self, message, pubkey): |
|
|
|
pk = ser_to_point(pubkey) |
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()): |
|
raise Exception('invalid pubkey') |
|
|
|
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order()) |
|
ephemeral = EC_KEY(ephemeral_exponent) |
|
ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier) |
|
key = hashlib.sha512(ecdh_key).digest() |
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:] |
|
ciphertext = aes_encrypt_with_iv(key_e, iv, message) |
|
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex') |
|
encrypted = 'BIE1' + ephemeral_pubkey + ciphertext |
|
mac = hmac.new(key_m, encrypted, hashlib.sha256).digest() |
|
|
|
return base64.b64encode(encrypted + mac) |
|
|
|
|
|
def decrypt_message(self, encrypted): |
|
|
|
encrypted = base64.b64decode(encrypted) |
|
|
|
if len(encrypted) < 85: |
|
raise Exception('invalid ciphertext: length') |
|
|
|
magic = encrypted[:4] |
|
ephemeral_pubkey = encrypted[4:37] |
|
ciphertext = encrypted[37:-32] |
|
mac = encrypted[-32:] |
|
|
|
if magic != 'BIE1': |
|
raise Exception('invalid ciphertext: invalid magic bytes') |
|
|
|
try: |
|
ephemeral_pubkey = ser_to_point(ephemeral_pubkey) |
|
except AssertionError, e: |
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey') |
|
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()): |
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey') |
|
|
|
ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier) |
|
key = hashlib.sha512(ecdh_key).digest() |
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:] |
|
if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest(): |
|
raise Exception('invalid ciphertext: invalid mac') |
|
|
|
return aes_decrypt_with_iv(key_e, iv, ciphertext) |
|
|
|
|
|
###################################### BIP32 ############################## |
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) |
|
BIP32_PRIME = 0x80000000 |
|
|
|
|
|
def get_pubkeys_from_secret(secret): |
|
# public key |
|
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
K = public_key.to_string() |
|
K_compressed = GetPubKey(public_key.pubkey,True) |
|
return K, K_compressed |
|
|
|
|
|
# Child private key derivation function (from master private key) |
|
# k = master private key (32 bytes) |
|
# c = master chain code (extra entropy for key derivation) (32 bytes) |
|
# n = the index of the key we want to derive. (only 32 bits will be used) |
|
# If n is negative (i.e. the 32nd bit is set), the resulting private key's |
|
# corresponding public key can NOT be determined without the master private key. |
|
# However, if n is positive, the resulting private key's corresponding |
|
# public key can be determined without the master private key. |
|
def CKD_priv(k, c, n): |
|
is_prime = n & BIP32_PRIME |
|
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime) |
|
|
|
def _CKD_priv(k, c, s, is_prime): |
|
order = generator_secp256k1.order() |
|
keypair = EC_KEY(k) |
|
cK = GetPubKey(keypair.pubkey,True) |
|
data = chr(0) + k + s if is_prime else cK + s |
|
I = hmac.new(c, data, hashlib.sha512).digest() |
|
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) |
|
c_n = I[32:] |
|
return k_n, c_n |
|
|
|
# Child public key derivation function (from public key only) |
|
# K = master public key |
|
# c = master chain code |
|
# n = index of key we want to derive |
|
# This function allows us to find the nth public key, as long as n is |
|
# non-negative. If n is negative, we need the master private key to find it. |
|
def CKD_pub(cK, c, n): |
|
if n & BIP32_PRIME: raise |
|
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex')) |
|
|
|
# helper function, callable with arbitrary string |
|
def _CKD_pub(cK, c, s): |
|
order = generator_secp256k1.order() |
|
I = hmac.new(c, cK + s, hashlib.sha512).digest() |
|
curve = SECP256k1 |
|
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) |
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) |
|
c_n = I[32:] |
|
cK_n = GetPubKey(public_key.pubkey,True) |
|
return cK_n, c_n |
|
|
|
|
|
def xprv_header(xtype): |
|
return ("%08x"%(XPRV_HEADER + xtype)).decode('hex') |
|
|
|
def xpub_header(xtype): |
|
return ("%08x"%(XPUB_HEADER + xtype)).decode('hex') |
|
|
|
def serialize_xprv(xtype, c, k, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4): |
|
xprv = xprv_header(xtype) + chr(depth) + fingerprint + child_number + c + chr(0) + k |
|
return EncodeBase58Check(xprv) |
|
|
|
def serialize_xpub(xtype, c, cK, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4): |
|
xpub = xpub_header(xtype) + chr(depth) + fingerprint + child_number + c + cK |
|
return EncodeBase58Check(xpub) |
|
|
|
def deserialize_xkey(xkey, prv): |
|
xkey = DecodeBase58Check(xkey) |
|
if len(xkey) != 78: |
|
raise BaseException('Invalid length') |
|
depth = ord(xkey[4]) |
|
fingerprint = xkey[5:9] |
|
child_number = xkey[9:13] |
|
c = xkey[13:13+32] |
|
header = XPRV_HEADER if prv else XPUB_HEADER |
|
xtype = int('0x' + xkey[0:4].encode('hex'), 16) - header |
|
if xtype not in ([0, 1] if TESTNET else [0]): |
|
raise BaseException('Invalid header') |
|
n = 33 if prv else 32 |
|
K_or_k = xkey[13+n:] |
|
return xtype, depth, fingerprint, child_number, c, K_or_k |
|
|
|
def deserialize_xpub(xkey): |
|
return deserialize_xkey(xkey, False) |
|
|
|
def deserialize_xprv(xkey): |
|
return deserialize_xkey(xkey, True) |
|
|
|
def is_xpub(text): |
|
try: |
|
deserialize_xpub(text) |
|
return True |
|
except: |
|
return False |
|
|
|
def is_xprv(text): |
|
try: |
|
deserialize_xprv(text) |
|
return True |
|
except: |
|
return False |
|
|
|
|
|
def xpub_from_xprv(xprv): |
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) |
|
K, cK = get_pubkeys_from_secret(k) |
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) |
|
|
|
|
|
def bip32_root(seed, xtype): |
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
master_k = I[0:32] |
|
master_c = I[32:] |
|
K, cK = get_pubkeys_from_secret(master_k) |
|
xprv = serialize_xprv(xtype, master_c, master_k) |
|
xpub = serialize_xpub(xtype, master_c, cK) |
|
return xprv, xpub |
|
|
|
def xpub_from_pubkey(xtype, cK): |
|
assert cK[0] in ['\x02','\x03'] |
|
return serialize_xpub(xtype, chr(0)*32, cK) |
|
|
|
|
|
def bip32_private_derivation(xprv, branch, sequence): |
|
assert sequence.startswith(branch) |
|
if branch == sequence: |
|
return xprv, xpub_from_xprv(xprv) |
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
if n == '': continue |
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
parent_k = k |
|
k, c = CKD_priv(k, c, i) |
|
depth += 1 |
|
_, parent_cK = get_pubkeys_from_secret(parent_k) |
|
fingerprint = hash_160(parent_cK)[0:4] |
|
child_number = ("%08X"%i).decode('hex') |
|
K, cK = get_pubkeys_from_secret(k) |
|
xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) |
|
xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number) |
|
return xprv, xpub |
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence): |
|
xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub) |
|
assert sequence.startswith(branch) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
if n == '': continue |
|
i = int(n) |
|
parent_cK = cK |
|
cK, c = CKD_pub(cK, c, i) |
|
depth += 1 |
|
fingerprint = hash_160(parent_cK)[0:4] |
|
child_number = ("%08X"%i).decode('hex') |
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) |
|
|
|
|
|
def bip32_private_key(sequence, k, chain): |
|
for i in sequence: |
|
k, chain = CKD_priv(k, chain, i) |
|
return SecretToASecret(k, True) |
|
|
|
|
|
def xkeys_from_seed(seed, passphrase, derivation): |
|
from mnemonic import Mnemonic |
|
xprv, xpub = bip32_root(Mnemonic.mnemonic_to_seed(seed, passphrase)) |
|
xprv, xpub = bip32_private_derivation(xprv, "m/", derivation) |
|
return xprv, xpub
|
|
|