You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
747 lines
23 KiB
747 lines
23 KiB
# -*- coding: utf-8 -*- |
|
#!/usr/bin/env python |
|
# |
|
# Electrum - lightweight Bitcoin client |
|
# Copyright (C) 2011 thomasv@gitorious |
|
# |
|
# This program is free software: you can redistribute it and/or modify |
|
# it under the terms of the GNU General Public License as published by |
|
# the Free Software Foundation, either version 3 of the License, or |
|
# (at your option) any later version. |
|
# |
|
# This program is distributed in the hope that it will be useful, |
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
# GNU General Public License for more details. |
|
# |
|
# You should have received a copy of the GNU General Public License |
|
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
|
|
import hashlib, base64, ecdsa, re |
|
import hmac |
|
from util import print_error |
|
|
|
def rev_hex(s): |
|
return s.decode('hex')[::-1].encode('hex') |
|
|
|
def int_to_hex(i, length=1): |
|
s = hex(i)[2:].rstrip('L') |
|
s = "0"*(2*length - len(s)) + s |
|
return rev_hex(s) |
|
|
|
def var_int(i): |
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
if i<0xfd: |
|
return int_to_hex(i) |
|
elif i<=0xffff: |
|
return "fd"+int_to_hex(i,2) |
|
elif i<=0xffffffff: |
|
return "fe"+int_to_hex(i,4) |
|
else: |
|
return "ff"+int_to_hex(i,8) |
|
|
|
def op_push(i): |
|
if i<0x4c: |
|
return int_to_hex(i) |
|
elif i<0xff: |
|
return '4c' + int_to_hex(i) |
|
elif i<0xffff: |
|
return '4d' + int_to_hex(i,2) |
|
else: |
|
return '4e' + int_to_hex(i,4) |
|
|
|
|
|
|
|
def sha256(x): |
|
return hashlib.sha256(x).digest() |
|
|
|
def Hash(x): |
|
if type(x) is unicode: x=x.encode('utf-8') |
|
return sha256(sha256(x)) |
|
|
|
hash_encode = lambda x: x[::-1].encode('hex') |
|
hash_decode = lambda x: x.decode('hex')[::-1] |
|
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest() |
|
|
|
def mnemonic_to_seed(mnemonic, passphrase): |
|
from pbkdf2 import PBKDF2 |
|
import hmac |
|
PBKDF2_ROUNDS = 2048 |
|
return PBKDF2(mnemonic, 'mnemonic' + passphrase, iterations = PBKDF2_ROUNDS, macmodule = hmac, digestmodule = hashlib.sha512).read(64) |
|
|
|
from version import SEED_PREFIX |
|
is_new_seed = lambda x: hmac_sha_512("Seed version", x).encode('hex')[0:2].startswith(SEED_PREFIX) |
|
|
|
def is_old_seed(seed): |
|
import mnemonic |
|
words = seed.strip().split() |
|
try: |
|
mnemonic.mn_decode(words) |
|
uses_electrum_words = True |
|
except Exception: |
|
uses_electrum_words = False |
|
|
|
try: |
|
seed.decode('hex') |
|
is_hex = True |
|
except Exception: |
|
is_hex = False |
|
|
|
return is_hex or (uses_electrum_words and len(words) == 12) |
|
|
|
|
|
# pywallet openssl private key implementation |
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False): |
|
if compressed: |
|
key = '3081d30201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107042102' + \ |
|
'%064x' % _Gx + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a124032200' |
|
else: |
|
key = '308201130201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107044104' + \ |
|
'%064x' % _Gx + \ |
|
'%064x' % _Gy + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a144034200' |
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed) |
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False): |
|
# public keys are 65 bytes long (520 bits) |
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate |
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed |
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd |
|
if compressed: |
|
if pubkey.point.y() & 1: |
|
key = '03' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '02' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '04' + \ |
|
'%064x' % pubkey.point.x() + \ |
|
'%064x' % pubkey.point.y() |
|
|
|
return key.decode('hex') |
|
|
|
# end pywallet openssl private key implementation |
|
|
|
|
|
|
|
############ functions from pywallet ##################### |
|
|
|
def hash_160(public_key): |
|
try: |
|
md = hashlib.new('ripemd160') |
|
md.update(sha256(public_key)) |
|
return md.digest() |
|
except Exception: |
|
import ripemd |
|
md = ripemd.new(sha256(public_key)) |
|
return md.digest() |
|
|
|
|
|
def public_key_to_bc_address(public_key): |
|
h160 = hash_160(public_key) |
|
return hash_160_to_bc_address(h160) |
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0): |
|
vh160 = chr(addrtype) + h160 |
|
h = Hash(vh160) |
|
addr = vh160 + h[0:4] |
|
return b58encode(addr) |
|
|
|
def bc_address_to_hash_160(addr): |
|
bytes = b58decode(addr, 25) |
|
return ord(bytes[0]), bytes[1:21] |
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' |
|
__b58base = len(__b58chars) |
|
|
|
def b58encode(v): |
|
""" encode v, which is a string of bytes, to base58.""" |
|
|
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += (256**i) * ord(c) |
|
|
|
result = '' |
|
while long_value >= __b58base: |
|
div, mod = divmod(long_value, __b58base) |
|
result = __b58chars[mod] + result |
|
long_value = div |
|
result = __b58chars[long_value] + result |
|
|
|
# Bitcoin does a little leading-zero-compression: |
|
# leading 0-bytes in the input become leading-1s |
|
nPad = 0 |
|
for c in v: |
|
if c == '\0': nPad += 1 |
|
else: break |
|
|
|
return (__b58chars[0]*nPad) + result |
|
|
|
def b58decode(v, length): |
|
""" decode v into a string of len bytes.""" |
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += __b58chars.find(c) * (__b58base**i) |
|
|
|
result = '' |
|
while long_value >= 256: |
|
div, mod = divmod(long_value, 256) |
|
result = chr(mod) + result |
|
long_value = div |
|
result = chr(long_value) + result |
|
|
|
nPad = 0 |
|
for c in v: |
|
if c == __b58chars[0]: nPad += 1 |
|
else: break |
|
|
|
result = chr(0)*nPad + result |
|
if length is not None and len(result) != length: |
|
return None |
|
|
|
return result |
|
|
|
|
|
def EncodeBase58Check(vchIn): |
|
hash = Hash(vchIn) |
|
return b58encode(vchIn + hash[0:4]) |
|
|
|
def DecodeBase58Check(psz): |
|
vchRet = b58decode(psz, None) |
|
key = vchRet[0:-4] |
|
csum = vchRet[-4:] |
|
hash = Hash(key) |
|
cs32 = hash[0:4] |
|
if cs32 != csum: |
|
return None |
|
else: |
|
return key |
|
|
|
def PrivKeyToSecret(privkey): |
|
return privkey[9:9+32] |
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0): |
|
vchIn = chr((addrtype+128)&255) + secret |
|
if compressed: vchIn += '\01' |
|
return EncodeBase58Check(vchIn) |
|
|
|
def ASecretToSecret(key, addrtype=0): |
|
vch = DecodeBase58Check(key) |
|
if vch and vch[0] == chr((addrtype+128)&255): |
|
return vch[1:] |
|
else: |
|
return False |
|
|
|
def regenerate_key(sec): |
|
b = ASecretToSecret(sec) |
|
if not b: |
|
return False |
|
b = b[0:32] |
|
return EC_KEY(b) |
|
|
|
def GetPubKey(pubkey, compressed=False): |
|
return i2o_ECPublicKey(pubkey, compressed) |
|
|
|
def GetPrivKey(pkey, compressed=False): |
|
return i2d_ECPrivateKey(pkey, compressed) |
|
|
|
def GetSecret(pkey): |
|
return ('%064x' % pkey.secret).decode('hex') |
|
|
|
def is_compressed(sec): |
|
b = ASecretToSecret(sec) |
|
return len(b) == 33 |
|
|
|
|
|
def public_key_from_private_key(sec): |
|
# rebuild public key from private key, compressed or uncompressed |
|
pkey = regenerate_key(sec) |
|
assert pkey |
|
compressed = is_compressed(sec) |
|
public_key = GetPubKey(pkey.pubkey, compressed) |
|
return public_key.encode('hex') |
|
|
|
|
|
def address_from_private_key(sec): |
|
public_key = public_key_from_private_key(sec) |
|
address = public_key_to_bc_address(public_key.decode('hex')) |
|
return address |
|
|
|
|
|
def is_valid(addr): |
|
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z') |
|
if not ADDRESS_RE.match(addr): return False |
|
try: |
|
addrtype, h = bc_address_to_hash_160(addr) |
|
except Exception: |
|
return False |
|
return addr == hash_160_to_bc_address(h, addrtype) |
|
|
|
|
|
########### end pywallet functions ####################### |
|
|
|
try: |
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 |
|
except Exception: |
|
print "cannot import ecdsa.curve_secp256k1. You probably need to upgrade ecdsa.\nTry: sudo pip install --upgrade ecdsa" |
|
exit() |
|
|
|
from ecdsa.curves import SECP256k1 |
|
from ecdsa.ellipticcurve import Point |
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
def msg_magic(message): |
|
varint = var_int(len(message)) |
|
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)]) |
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message |
|
|
|
|
|
def verify_message(address, signature, message): |
|
try: |
|
EC_KEY.verify_message(address, signature, message) |
|
return True |
|
except Exception as e: |
|
print_error("Verification error: {0}".format(e)) |
|
return False |
|
|
|
|
|
def encrypt_message(message, pubkey): |
|
return EC_KEY.encrypt_message(message, pubkey.decode('hex')) |
|
|
|
|
|
def chunks(l, n): |
|
return [l[i:i+n] for i in xrange(0, len(l), n)] |
|
|
|
|
|
def ECC_YfromX(x,curved=curve_secp256k1, odd=True): |
|
_p = curved.p() |
|
_a = curved.a() |
|
_b = curved.b() |
|
for offset in range(128): |
|
Mx = x + offset |
|
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p |
|
My = pow(My2, (_p+1)/4, _p ) |
|
|
|
if curved.contains_point(Mx,My): |
|
if odd == bool(My&1): |
|
return [My,offset] |
|
return [_p-My,offset] |
|
raise Exception('ECC_YfromX: No Y found') |
|
|
|
def private_header(msg,v): |
|
assert v<1, "Can't write version %d private header"%v |
|
r = '' |
|
if v==0: |
|
r += ('%08x'%len(msg)).decode('hex') |
|
r += sha256(msg)[:2] |
|
return ('%02x'%v).decode('hex') + ('%04x'%len(r)).decode('hex') + r |
|
|
|
def public_header(pubkey,v): |
|
assert v<1, "Can't write version %d public header"%v |
|
r = '' |
|
if v==0: |
|
r = sha256(pubkey)[:2] |
|
return '\x6a\x6a' + ('%02x'%v).decode('hex') + ('%04x'%len(r)).decode('hex') + r |
|
|
|
|
|
def negative_point(P): |
|
return Point( P.curve(), P.x(), -P.y(), P.order() ) |
|
|
|
|
|
def point_to_ser(P, comp=True ): |
|
if comp: |
|
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex') |
|
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex') |
|
|
|
|
|
def ser_to_point(Aser): |
|
curve = curve_secp256k1 |
|
generator = generator_secp256k1 |
|
_r = generator.order() |
|
assert Aser[0] in ['\x02','\x03','\x04'] |
|
if Aser[0] == '\x04': |
|
return Point( curve, str_to_long(Aser[1:33]), str_to_long(Aser[33:]), _r ) |
|
Mx = string_to_number(Aser[1:]) |
|
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r ) |
|
|
|
|
|
|
|
class EC_KEY(object): |
|
def __init__( self, k ): |
|
secret = string_to_number(k) |
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) |
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) |
|
self.secret = secret |
|
|
|
def get_public_key(self, compressed=True): |
|
return point_to_ser(self.pubkey.point, compressed).encode('hex') |
|
|
|
def sign_message(self, message, compressed, address): |
|
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string ) |
|
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string) |
|
for i in range(4): |
|
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature ) |
|
try: |
|
self.verify_message( address, sig, message) |
|
return sig |
|
except Exception: |
|
continue |
|
else: |
|
raise Exception("error: cannot sign message") |
|
|
|
|
|
@classmethod |
|
def verify_message(self, address, signature, message): |
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """ |
|
from ecdsa import numbertheory, util |
|
import msqr |
|
curve = curve_secp256k1 |
|
G = generator_secp256k1 |
|
order = G.order() |
|
# extract r,s from signature |
|
sig = base64.b64decode(signature) |
|
if len(sig) != 65: raise Exception("Wrong encoding") |
|
r,s = util.sigdecode_string(sig[1:], order) |
|
nV = ord(sig[0]) |
|
if nV < 27 or nV >= 35: |
|
raise Exception("Bad encoding") |
|
if nV >= 31: |
|
compressed = True |
|
nV -= 4 |
|
else: |
|
compressed = False |
|
|
|
recid = nV - 27 |
|
# 1.1 |
|
x = r + (recid/2) * order |
|
# 1.3 |
|
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p() |
|
beta = msqr.modular_sqrt(alpha, curve.p()) |
|
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta |
|
# 1.4 the constructor checks that nR is at infinity |
|
R = Point(curve, x, y, order) |
|
# 1.5 compute e from message: |
|
h = Hash( msg_magic(message) ) |
|
e = string_to_number(h) |
|
minus_e = -e % order |
|
# 1.6 compute Q = r^-1 (sR - eG) |
|
inv_r = numbertheory.inverse_mod(r,order) |
|
Q = inv_r * ( s * R + minus_e * G ) |
|
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 ) |
|
# check that Q is the public key |
|
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) |
|
# check that we get the original signing address |
|
addr = public_key_to_bc_address( point_to_ser(public_key.pubkey.point, compressed) ) |
|
if address != addr: |
|
raise Exception("Bad signature") |
|
|
|
|
|
# ecdsa encryption/decryption methods |
|
# credits: jackjack, https://github.com/jackjack-jj/jeeq |
|
|
|
@classmethod |
|
def encrypt_message(self, message, pubkey): |
|
generator = generator_secp256k1 |
|
curved = curve_secp256k1 |
|
r = '' |
|
msg = private_header(message,0) + message |
|
msg = msg + ('\x00'*( 32-(len(msg)%32) )) |
|
msgs = chunks(msg,32) |
|
|
|
_r = generator.order() |
|
str_to_long = string_to_number |
|
|
|
P = generator |
|
pk = ser_to_point(pubkey) |
|
|
|
for i in range(len(msgs)): |
|
n = ecdsa.util.randrange( pow(2,256) ) |
|
Mx = str_to_long(msgs[i]) |
|
My, xoffset = ECC_YfromX(Mx, curved) |
|
M = Point( curved, Mx+xoffset, My, _r ) |
|
T = P*n |
|
U = pk*n + M |
|
toadd = point_to_ser(T) + point_to_ser(U) |
|
toadd = chr(ord(toadd[0])-2 + 2*xoffset) + toadd[1:] |
|
r += toadd |
|
|
|
return base64.b64encode(public_header(pubkey,0) + r) |
|
|
|
|
|
def decrypt_message(self, enc): |
|
G = generator_secp256k1 |
|
curved = curve_secp256k1 |
|
pvk = self.secret |
|
pubkeys = [point_to_ser(G*pvk,True), point_to_ser(G*pvk,False)] |
|
enc = base64.b64decode(enc) |
|
str_to_long = string_to_number |
|
|
|
assert enc[:2]=='\x6a\x6a' |
|
|
|
phv = str_to_long(enc[2]) |
|
assert phv==0, "Can't read version %d public header"%phv |
|
hs = str_to_long(enc[3:5]) |
|
public_header=enc[5:5+hs] |
|
checksum_pubkey=public_header[:2] |
|
address=filter(lambda x:sha256(x)[:2]==checksum_pubkey, pubkeys) |
|
assert len(address)>0, 'Bad private key' |
|
address=address[0] |
|
enc=enc[5+hs:] |
|
r = '' |
|
for Tser,User in map(lambda x:[x[:33],x[33:]], chunks(enc,66)): |
|
ots = ord(Tser[0]) |
|
xoffset = ots>>1 |
|
Tser = chr(2+(ots&1))+Tser[1:] |
|
T = ser_to_point(Tser) |
|
U = ser_to_point(User) |
|
V = T*pvk |
|
Mcalc = U + negative_point(V) |
|
r += ('%064x'%(Mcalc.x()-xoffset)).decode('hex') |
|
|
|
pvhv = str_to_long(r[0]) |
|
assert pvhv==0, "Can't read version %d private header"%pvhv |
|
phs = str_to_long(r[1:3]) |
|
private_header = r[3:3+phs] |
|
size = str_to_long(private_header[:4]) |
|
checksum = private_header[4:6] |
|
r = r[3+phs:] |
|
|
|
msg = r[:size] |
|
hashmsg = sha256(msg)[:2] |
|
checksumok = hashmsg==checksum |
|
|
|
return [msg, checksumok, address] |
|
|
|
|
|
|
|
|
|
|
|
###################################### BIP32 ############################## |
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) |
|
BIP32_PRIME = 0x80000000 |
|
|
|
|
|
def get_pubkeys_from_secret(secret): |
|
# public key |
|
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
K = public_key.to_string() |
|
K_compressed = GetPubKey(public_key.pubkey,True) |
|
return K, K_compressed |
|
|
|
|
|
# Child private key derivation function (from master private key) |
|
# k = master private key (32 bytes) |
|
# c = master chain code (extra entropy for key derivation) (32 bytes) |
|
# n = the index of the key we want to derive. (only 32 bits will be used) |
|
# If n is negative (i.e. the 32nd bit is set), the resulting private key's |
|
# corresponding public key can NOT be determined without the master private key. |
|
# However, if n is positive, the resulting private key's corresponding |
|
# public key can be determined without the master private key. |
|
def CKD_priv(k, c, n): |
|
is_prime = n & BIP32_PRIME |
|
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime) |
|
|
|
def _CKD_priv(k, c, s, is_prime): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
keypair = EC_KEY(k) |
|
cK = GetPubKey(keypair.pubkey,True) |
|
data = chr(0) + k + s if is_prime else cK + s |
|
I = hmac.new(c, data, hashlib.sha512).digest() |
|
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) |
|
c_n = I[32:] |
|
return k_n, c_n |
|
|
|
# Child public key derivation function (from public key only) |
|
# K = master public key |
|
# c = master chain code |
|
# n = index of key we want to derive |
|
# This function allows us to find the nth public key, as long as n is |
|
# non-negative. If n is negative, we need the master private key to find it. |
|
def CKD_pub(cK, c, n): |
|
if n & BIP32_PRIME: raise |
|
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex')) |
|
|
|
# helper function, callable with arbitrary string |
|
def _CKD_pub(cK, c, s): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
I = hmac.new(c, cK + s, hashlib.sha512).digest() |
|
curve = SECP256k1 |
|
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) |
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) |
|
c_n = I[32:] |
|
cK_n = GetPubKey(public_key.pubkey,True) |
|
return cK_n, c_n |
|
|
|
|
|
|
|
def deserialize_xkey(xkey): |
|
xkey = DecodeBase58Check(xkey) |
|
assert len(xkey) == 78 |
|
assert xkey[0:4].encode('hex') in ["0488ade4", "0488b21e"] |
|
depth = ord(xkey[4]) |
|
fingerprint = xkey[5:9] |
|
child_number = xkey[9:13] |
|
c = xkey[13:13+32] |
|
if xkey[0:4].encode('hex') == "0488ade4": |
|
K_or_k = xkey[13+33:] |
|
else: |
|
K_or_k = xkey[13+32:] |
|
return depth, fingerprint, child_number, c, K_or_k |
|
|
|
|
|
|
|
def bip32_root(seed): |
|
import hmac |
|
seed = seed.decode('hex') |
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
master_k = I[0:32] |
|
master_c = I[32:] |
|
K, cK = get_pubkeys_from_secret(master_k) |
|
xprv = ("0488ADE4" + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k |
|
xpub = ("0488B21E" + "00" + "00000000" + "00000000").decode("hex") + master_c + cK |
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
def bip32_private_derivation(xprv, branch, sequence): |
|
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv) |
|
assert sequence.startswith(branch) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
if n == '': continue |
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
parent_k = k |
|
k, c = CKD_priv(k, c, i) |
|
depth += 1 |
|
|
|
_, parent_cK = get_pubkeys_from_secret(parent_k) |
|
fingerprint = hash_160(parent_cK)[0:4] |
|
child_number = ("%08X"%i).decode('hex') |
|
K, cK = get_pubkeys_from_secret(k) |
|
xprv = "0488ADE4".decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k |
|
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK |
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence): |
|
depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub) |
|
assert sequence.startswith(branch) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
if n == '': continue |
|
i = int(n) |
|
parent_cK = cK |
|
cK, c = CKD_pub(cK, c, i) |
|
depth += 1 |
|
|
|
fingerprint = hash_160(parent_cK)[0:4] |
|
child_number = ("%08X"%i).decode('hex') |
|
xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK |
|
return EncodeBase58Check(xpub) |
|
|
|
|
|
|
|
|
|
def bip32_private_key(sequence, k, chain): |
|
for i in sequence: |
|
k, chain = CKD_priv(k, chain, i) |
|
return SecretToASecret(k, True) |
|
|
|
|
|
|
|
|
|
################################## transactions |
|
|
|
MIN_RELAY_TX_FEE = 1000 |
|
|
|
|
|
|
|
def test_bip32(seed, sequence): |
|
""" |
|
run a test vector, |
|
see https://en.bitcoin.it/wiki/BIP_0032_TestVectors |
|
""" |
|
|
|
xprv, xpub = bip32_root(seed) |
|
print xpub |
|
print xprv |
|
|
|
assert sequence[0:2] == "m/" |
|
path = 'm' |
|
sequence = sequence[2:] |
|
for n in sequence.split('/'): |
|
child_path = path + '/' + n |
|
if n[-1] != "'": |
|
xpub2 = bip32_public_derivation(xpub, path, child_path) |
|
xprv, xpub = bip32_private_derivation(xprv, path, child_path) |
|
if n[-1] != "'": |
|
assert xpub == xpub2 |
|
|
|
|
|
path = child_path |
|
print path |
|
print xpub |
|
print xprv |
|
|
|
print "----" |
|
|
|
|
|
|
|
def test_crypto(): |
|
|
|
G = generator_secp256k1 |
|
_r = G.order() |
|
pvk = ecdsa.util.randrange( pow(2,256) ) %_r |
|
|
|
Pub = pvk*G |
|
pubkey_c = point_to_ser(Pub,True) |
|
pubkey_u = point_to_ser(Pub,False) |
|
addr_c = public_key_to_bc_address(pubkey_c) |
|
addr_u = public_key_to_bc_address(pubkey_u) |
|
|
|
print "Private key ", '%064x'%pvk |
|
print "Compressed public key ", pubkey_c.encode('hex') |
|
print "Uncompressed public key", pubkey_u.encode('hex') |
|
|
|
message = "Chancellor on brink of second bailout for banks" |
|
enc = EC_KEY.encrypt_message(message,pubkey_c) |
|
eck = EC_KEY(number_to_string(pvk,_r)) |
|
dec = eck.decrypt_message(enc) |
|
print "decrypted", dec |
|
|
|
signature = eck.sign_message(message, True, addr_c) |
|
print signature |
|
EC_KEY.verify_message(addr_c, signature, message) |
|
|
|
|
|
if __name__ == '__main__': |
|
#test_crypto() |
|
test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000") |
|
test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2") |
|
|
|
|
|
|