You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
525 lines
16 KiB
525 lines
16 KiB
# -*- coding: utf-8 -*- |
|
#!/usr/bin/env python |
|
# |
|
# Electrum - lightweight Bitcoin client |
|
# Copyright (C) 2011 thomasv@gitorious |
|
# |
|
# This program is free software: you can redistribute it and/or modify |
|
# it under the terms of the GNU General Public License as published by |
|
# the Free Software Foundation, either version 3 of the License, or |
|
# (at your option) any later version. |
|
# |
|
# This program is distributed in the hope that it will be useful, |
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
# GNU General Public License for more details. |
|
# |
|
# You should have received a copy of the GNU General Public License |
|
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
|
|
import hashlib, base64, ecdsa, re |
|
import hmac |
|
from util import print_error |
|
|
|
def rev_hex(s): |
|
return s.decode('hex')[::-1].encode('hex') |
|
|
|
def int_to_hex(i, length=1): |
|
s = hex(i)[2:].rstrip('L') |
|
s = "0"*(2*length - len(s)) + s |
|
return rev_hex(s) |
|
|
|
def var_int(i): |
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
if i<0xfd: |
|
return int_to_hex(i) |
|
elif i<=0xffff: |
|
return "fd"+int_to_hex(i,2) |
|
elif i<=0xffffffff: |
|
return "fe"+int_to_hex(i,4) |
|
else: |
|
return "ff"+int_to_hex(i,8) |
|
|
|
def op_push(i): |
|
if i<0x4c: |
|
return int_to_hex(i) |
|
elif i<0xff: |
|
return '4c' + int_to_hex(i) |
|
elif i<0xffff: |
|
return '4d' + int_to_hex(i,2) |
|
else: |
|
return '4e' + int_to_hex(i,4) |
|
|
|
|
|
|
|
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest() |
|
hash_encode = lambda x: x[::-1].encode('hex') |
|
hash_decode = lambda x: x.decode('hex')[::-1] |
|
|
|
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest() |
|
mnemonic_hash = lambda x: hmac_sha_512("Bitcoin mnemonic", x).encode('hex') |
|
|
|
# pywallet openssl private key implementation |
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False): |
|
if compressed: |
|
key = '3081d30201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107042102' + \ |
|
'%064x' % _Gx + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a124032200' |
|
else: |
|
key = '308201130201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107044104' + \ |
|
'%064x' % _Gx + \ |
|
'%064x' % _Gy + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a144034200' |
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed) |
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False): |
|
# public keys are 65 bytes long (520 bits) |
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate |
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed |
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd |
|
if compressed: |
|
if pubkey.point.y() & 1: |
|
key = '03' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '02' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '04' + \ |
|
'%064x' % pubkey.point.x() + \ |
|
'%064x' % pubkey.point.y() |
|
|
|
return key.decode('hex') |
|
|
|
# end pywallet openssl private key implementation |
|
|
|
|
|
|
|
############ functions from pywallet ##################### |
|
|
|
def hash_160(public_key): |
|
try: |
|
md = hashlib.new('ripemd160') |
|
md.update(hashlib.sha256(public_key).digest()) |
|
return md.digest() |
|
except: |
|
import ripemd |
|
md = ripemd.new(hashlib.sha256(public_key).digest()) |
|
return md.digest() |
|
|
|
|
|
def public_key_to_bc_address(public_key): |
|
h160 = hash_160(public_key) |
|
return hash_160_to_bc_address(h160) |
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0): |
|
vh160 = chr(addrtype) + h160 |
|
h = Hash(vh160) |
|
addr = vh160 + h[0:4] |
|
return b58encode(addr) |
|
|
|
def bc_address_to_hash_160(addr): |
|
bytes = b58decode(addr, 25) |
|
return ord(bytes[0]), bytes[1:21] |
|
|
|
def encode_point(pubkey, compressed=False): |
|
order = generator_secp256k1.order() |
|
p = pubkey.pubkey.point |
|
x_str = ecdsa.util.number_to_string(p.x(), order) |
|
y_str = ecdsa.util.number_to_string(p.y(), order) |
|
if compressed: |
|
return chr(2 + (p.y() & 1)) + x_str |
|
else: |
|
return chr(4) + pubkey.to_string() #x_str + y_str |
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' |
|
__b58base = len(__b58chars) |
|
|
|
def b58encode(v): |
|
""" encode v, which is a string of bytes, to base58.""" |
|
|
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += (256**i) * ord(c) |
|
|
|
result = '' |
|
while long_value >= __b58base: |
|
div, mod = divmod(long_value, __b58base) |
|
result = __b58chars[mod] + result |
|
long_value = div |
|
result = __b58chars[long_value] + result |
|
|
|
# Bitcoin does a little leading-zero-compression: |
|
# leading 0-bytes in the input become leading-1s |
|
nPad = 0 |
|
for c in v: |
|
if c == '\0': nPad += 1 |
|
else: break |
|
|
|
return (__b58chars[0]*nPad) + result |
|
|
|
def b58decode(v, length): |
|
""" decode v into a string of len bytes.""" |
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += __b58chars.find(c) * (__b58base**i) |
|
|
|
result = '' |
|
while long_value >= 256: |
|
div, mod = divmod(long_value, 256) |
|
result = chr(mod) + result |
|
long_value = div |
|
result = chr(long_value) + result |
|
|
|
nPad = 0 |
|
for c in v: |
|
if c == __b58chars[0]: nPad += 1 |
|
else: break |
|
|
|
result = chr(0)*nPad + result |
|
if length is not None and len(result) != length: |
|
return None |
|
|
|
return result |
|
|
|
|
|
def EncodeBase58Check(vchIn): |
|
hash = Hash(vchIn) |
|
return b58encode(vchIn + hash[0:4]) |
|
|
|
def DecodeBase58Check(psz): |
|
vchRet = b58decode(psz, None) |
|
key = vchRet[0:-4] |
|
csum = vchRet[-4:] |
|
hash = Hash(key) |
|
cs32 = hash[0:4] |
|
if cs32 != csum: |
|
return None |
|
else: |
|
return key |
|
|
|
def PrivKeyToSecret(privkey): |
|
return privkey[9:9+32] |
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0): |
|
vchIn = chr((addrtype+128)&255) + secret |
|
if compressed: vchIn += '\01' |
|
return EncodeBase58Check(vchIn) |
|
|
|
def ASecretToSecret(key, addrtype=0): |
|
vch = DecodeBase58Check(key) |
|
if vch and vch[0] == chr((addrtype+128)&255): |
|
return vch[1:] |
|
else: |
|
return False |
|
|
|
def regenerate_key(sec): |
|
b = ASecretToSecret(sec) |
|
if not b: |
|
return False |
|
b = b[0:32] |
|
secret = int('0x' + b.encode('hex'), 16) |
|
return EC_KEY(secret) |
|
|
|
def GetPubKey(pubkey, compressed=False): |
|
return i2o_ECPublicKey(pubkey, compressed) |
|
|
|
def GetPrivKey(pkey, compressed=False): |
|
return i2d_ECPrivateKey(pkey, compressed) |
|
|
|
def GetSecret(pkey): |
|
return ('%064x' % pkey.secret).decode('hex') |
|
|
|
def is_compressed(sec): |
|
b = ASecretToSecret(sec) |
|
return len(b) == 33 |
|
|
|
|
|
def public_key_from_private_key(sec): |
|
# rebuild public key from private key, compressed or uncompressed |
|
pkey = regenerate_key(sec) |
|
assert pkey |
|
compressed = is_compressed(sec) |
|
public_key = GetPubKey(pkey.pubkey, compressed) |
|
return public_key.encode('hex') |
|
|
|
|
|
def address_from_private_key(sec): |
|
public_key = public_key_from_private_key(sec) |
|
address = public_key_to_bc_address(public_key.decode('hex')) |
|
return address |
|
|
|
|
|
def is_valid(addr): |
|
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z') |
|
if not ADDRESS_RE.match(addr): return False |
|
try: |
|
addrtype, h = bc_address_to_hash_160(addr) |
|
except: |
|
return False |
|
return addr == hash_160_to_bc_address(h, addrtype) |
|
|
|
|
|
########### end pywallet functions ####################### |
|
|
|
try: |
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 |
|
except: |
|
print "cannot import ecdsa.curve_secp256k1. You probably need to upgrade ecdsa.\nTry: sudo pip install --upgrade ecdsa" |
|
exit() |
|
from ecdsa.curves import SECP256k1 |
|
from ecdsa.util import string_to_number, number_to_string |
|
|
|
def msg_magic(message): |
|
varint = var_int(len(message)) |
|
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)]) |
|
|
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message |
|
|
|
|
|
def verify_message(address, signature, message): |
|
try: |
|
EC_KEY.verify_message(address, signature, message) |
|
return True |
|
except BaseException as e: |
|
print_error("Verification error: {0}".format(e)) |
|
return False |
|
|
|
|
|
|
|
class EC_KEY(object): |
|
def __init__( self, secret ): |
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) |
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) |
|
self.secret = secret |
|
|
|
def sign_message(self, message, compressed, address): |
|
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string ) |
|
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string) |
|
for i in range(4): |
|
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature ) |
|
try: |
|
self.verify_message( address, sig, message) |
|
return sig |
|
except: |
|
continue |
|
else: |
|
raise BaseException("error: cannot sign message") |
|
|
|
@classmethod |
|
def verify_message(self, address, signature, message): |
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """ |
|
from ecdsa import numbertheory, ellipticcurve, util |
|
import msqr |
|
curve = curve_secp256k1 |
|
G = generator_secp256k1 |
|
order = G.order() |
|
# extract r,s from signature |
|
sig = base64.b64decode(signature) |
|
if len(sig) != 65: raise BaseException("Wrong encoding") |
|
r,s = util.sigdecode_string(sig[1:], order) |
|
nV = ord(sig[0]) |
|
if nV < 27 or nV >= 35: |
|
raise BaseException("Bad encoding") |
|
if nV >= 31: |
|
compressed = True |
|
nV -= 4 |
|
else: |
|
compressed = False |
|
|
|
recid = nV - 27 |
|
# 1.1 |
|
x = r + (recid/2) * order |
|
# 1.3 |
|
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p() |
|
beta = msqr.modular_sqrt(alpha, curve.p()) |
|
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta |
|
# 1.4 the constructor checks that nR is at infinity |
|
R = ellipticcurve.Point(curve, x, y, order) |
|
# 1.5 compute e from message: |
|
h = Hash( msg_magic(message) ) |
|
e = string_to_number(h) |
|
minus_e = -e % order |
|
# 1.6 compute Q = r^-1 (sR - eG) |
|
inv_r = numbertheory.inverse_mod(r,order) |
|
Q = inv_r * ( s * R + minus_e * G ) |
|
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 ) |
|
# check that Q is the public key |
|
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) |
|
# check that we get the original signing address |
|
addr = public_key_to_bc_address( encode_point(public_key, compressed) ) |
|
if address != addr: |
|
raise BaseException("Bad signature") |
|
|
|
|
|
###################################### BIP32 ############################## |
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) |
|
BIP32_PRIME = 0x80000000 |
|
|
|
def bip32_init(seed): |
|
import hmac |
|
seed = seed.decode('hex') |
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
|
|
master_secret = I[0:32] |
|
master_chain = I[32:] |
|
|
|
K, K_compressed = get_pubkeys_from_secret(master_secret) |
|
return master_secret, master_chain, K, K_compressed |
|
|
|
|
|
def get_pubkeys_from_secret(secret): |
|
# public key |
|
curve = SECP256k1 |
|
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
K = public_key.to_string() |
|
K_compressed = GetPubKey(public_key.pubkey,True) |
|
return K, K_compressed |
|
|
|
|
|
|
|
|
|
def CKD(k, c, n): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
keypair = EC_KEY(string_to_number(k)) |
|
K = GetPubKey(keypair.pubkey,True) |
|
|
|
if n & BIP32_PRIME: |
|
data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex') |
|
I = hmac.new(c, data, hashlib.sha512).digest() |
|
else: |
|
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) |
|
c_n = I[32:] |
|
return k_n, c_n |
|
|
|
|
|
def CKD_prime(K, c, n): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
|
|
if n & BIP32_PRIME: raise |
|
|
|
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) |
|
K_compressed = GetPubKey(K_public_key.pubkey,True) |
|
|
|
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
curve = SECP256k1 |
|
pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point |
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) |
|
|
|
K_n = public_key.to_string() |
|
K_n_compressed = GetPubKey(public_key.pubkey,True) |
|
c_n = I[32:] |
|
|
|
return K_n, K_n_compressed, c_n |
|
|
|
|
|
|
|
def bip32_private_derivation(k, c, branch, sequence): |
|
assert sequence.startswith(branch) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
if n == '': continue |
|
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
k, c = CKD(k, c, n) |
|
K, K_compressed = get_pubkeys_from_secret(k) |
|
return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex') |
|
|
|
|
|
def bip32_public_derivation(c, K, branch, sequence): |
|
assert sequence.startswith(branch) |
|
sequence = sequence[len(branch):] |
|
for n in sequence.split('/'): |
|
n = int(n) |
|
K, cK, c = CKD_prime(K, c, n) |
|
|
|
return c.encode('hex'), K.encode('hex'), cK.encode('hex') |
|
|
|
|
|
def bip32_private_key(sequence, k, chain): |
|
for i in sequence: |
|
k, chain = CKD(k, chain, i) |
|
return SecretToASecret(k, True) |
|
|
|
|
|
|
|
|
|
################################## transactions |
|
|
|
MIN_RELAY_TX_FEE = 10000 |
|
|
|
|
|
|
|
def test_bip32(seed, sequence): |
|
""" |
|
run a test vector, |
|
see https://en.bitcoin.it/wiki/BIP_0032_TestVectors |
|
""" |
|
|
|
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) |
|
|
|
print "secret key", master_secret.encode('hex') |
|
print "chain code", master_chain.encode('hex') |
|
|
|
key_id = hash_160(master_public_key_compressed) |
|
print "keyid", key_id.encode('hex') |
|
print "base58" |
|
print "address", hash_160_to_bc_address(key_id) |
|
print "secret key", SecretToASecret(master_secret, True) |
|
|
|
k = master_secret |
|
c = master_chain |
|
|
|
s = ['m'] |
|
for n in sequence.split('/'): |
|
s.append(n) |
|
print "Chain [%s]" % '/'.join(s) |
|
|
|
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) |
|
k0, c0 = CKD(k, c, n) |
|
K0, K0_compressed = get_pubkeys_from_secret(k0) |
|
|
|
print "* Identifier" |
|
print " * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed)) |
|
|
|
print "* Secret Key" |
|
print " * (hex)", k0.encode('hex') |
|
print " * (wif)", SecretToASecret(k0, True) |
|
|
|
print "* Chain Code" |
|
print " * (hex)", c0.encode('hex') |
|
|
|
k = k0 |
|
c = c0 |
|
print "----" |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000") |
|
test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2") |
|
|
|
|