You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

553 lines
22 KiB

# -*- coding: utf-8 -*-
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2018-2024 The Electrum developers
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import base64
import hashlib
import functools
import secrets
from typing import Union, Tuple, Optional
from ctypes import (
byref, c_char_p, c_size_t, create_string_buffer, cast,
)
from . import ecc_fast
from .ecc_fast import _libsecp256k1, SECP256K1_EC_UNCOMPRESSED, LibModuleMissing
def assert_bytes(x):
assert isinstance(x, (bytes, bytearray))
# Some unit tests need to create ECDSA sigs without grinding the R value (and just use RFC6979).
# see https://github.com/bitcoin/bitcoin/pull/13666
ENABLE_ECDSA_R_VALUE_GRINDING = True
def string_to_number(b: bytes) -> int:
return int.from_bytes(b, byteorder='big', signed=False)
def ecdsa_sig64_from_der_sig(der_sig: bytes) -> bytes:
r, s = get_r_and_s_from_ecdsa_der_sig(der_sig)
return ecdsa_sig64_from_r_and_s(r, s)
def ecdsa_der_sig_from_ecdsa_sig64(sig64: bytes) -> bytes:
r, s = get_r_and_s_from_ecdsa_sig64(sig64)
return ecdsa_der_sig_from_r_and_s(r, s)
def ecdsa_der_sig_from_r_and_s(r: int, s: int) -> bytes:
sig64 = (
int.to_bytes(r, length=32, byteorder="big") +
int.to_bytes(s, length=32, byteorder="big"))
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig64)
if 1 != ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
der_sig = create_string_buffer(80) # this much space should be enough
der_sig_size = c_size_t(len(der_sig))
ret = _libsecp256k1.secp256k1_ecdsa_signature_serialize_der(_libsecp256k1.ctx, der_sig, byref(der_sig_size), sig)
if 1 != ret:
raise Exception("failed to serialize DER sig")
der_sig_size = der_sig_size.value
return bytes(der_sig)[:der_sig_size]
def get_r_and_s_from_ecdsa_der_sig(der_sig: bytes) -> Tuple[int, int]:
assert isinstance(der_sig, bytes)
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_der(_libsecp256k1.ctx, sig, der_sig, len(der_sig))
if 1 != ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
def get_r_and_s_from_ecdsa_sig64(sig64: bytes) -> Tuple[int, int]:
if not (isinstance(sig64, bytes) and len(sig64) == 64):
raise Exception("sig64 must be bytes, and 64 bytes exactly")
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig64)
if 1 != ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
def ecdsa_sig64_from_r_and_s(r: int, s: int) -> bytes:
sig64 = (
int.to_bytes(r, length=32, byteorder="big") +
int.to_bytes(s, length=32, byteorder="big"))
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig64)
if 1 != ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
return bytes(compact_signature)
def _x_and_y_from_pubkey_bytes(pubkey: bytes) -> Tuple[int, int]:
assert isinstance(pubkey, bytes), f'pubkey must be bytes, not {type(pubkey)}'
pubkey_ptr = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ec_pubkey_parse(
_libsecp256k1.ctx, pubkey_ptr, pubkey, len(pubkey))
if 1 != ret:
raise InvalidECPointException(
f'public key could not be parsed or is invalid: {pubkey.hex()!r}')
pubkey_serialized = create_string_buffer(65)
pubkey_size = c_size_t(65)
_libsecp256k1.secp256k1_ec_pubkey_serialize(
_libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey_ptr, SECP256K1_EC_UNCOMPRESSED)
pubkey_serialized = bytes(pubkey_serialized)
assert pubkey_serialized[0] == 0x04, pubkey_serialized
x = int.from_bytes(pubkey_serialized[1:33], byteorder='big', signed=False)
y = int.from_bytes(pubkey_serialized[33:65], byteorder='big', signed=False)
return x, y
class InvalidECPointException(Exception):
"""e.g. not on curve, or infinity"""
@functools.total_ordering
class ECPubkey(object):
def __init__(self, b: Optional[bytes]):
if b is not None:
assert isinstance(b, (bytes, bytearray)), f'pubkey must be bytes-like, not {type(b)}'
if isinstance(b, bytearray):
b = bytes(b)
self._x, self._y = _x_and_y_from_pubkey_bytes(b)
else:
self._x, self._y = None, None
@classmethod
def from_ecdsa_sig64(cls, sig64: bytes, recid: int, msg32: bytes) -> 'ECPubkey':
assert_bytes(sig64)
if len(sig64) != 64:
raise Exception(f'wrong encoding used for signature? len={len(sig64)} (should be 64)')
if not (0 <= recid <= 3):
raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid))
assert isinstance(msg32, (bytes, bytearray)), type(msg32)
assert len(msg32) == 32, len(msg32)
sig65 = create_string_buffer(65)
ret = _libsecp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact(
_libsecp256k1.ctx, sig65, sig64, recid)
if 1 != ret:
raise Exception('failed to parse signature')
pubkey = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_recover(_libsecp256k1.ctx, pubkey, sig65, msg32)
if 1 != ret:
raise InvalidECPointException('failed to recover public key')
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey)
@classmethod
def from_ecdsa_sig65(cls, sig65: bytes, msg32: bytes) -> Tuple['ECPubkey', bool, Optional[str]]:
assert_bytes(sig65)
if len(sig65) != 65:
raise Exception(f'wrong encoding used for signature? len={len(sig65)} (should be 65)')
nV = sig65[0]
# as per BIP-0137:
# 27-30: p2pkh (uncompressed)
# 31-34: p2pkh (compressed)
# 35-38: p2wpkh-p2sh
# 39-42: p2wpkh
# However, the signatures we create do not respect this, and we instead always use 27-34,
# only distinguishing between compressed/uncompressed, so we treat those values as "any".
if not (27 <= nV <= 42):
raise Exception("Bad encoding")
txin_type_guess = None
compressed = True
if nV >= 39:
nV -= 12
txin_type_guess = "p2wpkh"
elif nV >= 35:
nV -= 8
txin_type_guess = "p2wpkh-p2sh"
elif nV >= 31:
nV -= 4
else:
compressed = False
recid = nV - 27
pubkey = cls.from_ecdsa_sig64(sig65[1:], recid, msg32)
return pubkey, compressed, txin_type_guess
@classmethod
def from_x_and_y(cls, x: int, y: int) -> 'ECPubkey':
_bytes = (b'\x04'
+ int.to_bytes(x, length=32, byteorder='big', signed=False)
+ int.to_bytes(y, length=32, byteorder='big', signed=False))
return ECPubkey(_bytes)
def get_public_key_bytes(self, compressed=True) -> bytes:
if self.is_at_infinity(): raise Exception('point is at infinity')
x = int.to_bytes(self.x(), length=32, byteorder='big', signed=False)
y = int.to_bytes(self.y(), length=32, byteorder='big', signed=False)
if compressed:
header = b'\x03' if self.y() & 1 else b'\x02'
return header + x
else:
header = b'\x04'
return header + x + y
def get_public_key_hex(self, compressed=True) -> str:
return self.get_public_key_bytes(compressed).hex()
def point(self) -> Tuple[Optional[int], Optional[int]]:
x = self.x()
y = self.y()
assert (x is None) == (y is None), f"either both x and y, or neither should be None. {(x, y)=}"
return x, y
def x(self) -> Optional[int]:
return self._x
def y(self) -> Optional[int]:
return self._y
def _to_libsecp256k1_pubkey_ptr(self):
"""pointer to `secp256k1_pubkey` C struct"""
pubkey_ptr = create_string_buffer(64)
pk_bytes = self.get_public_key_bytes(compressed=False)
ret = _libsecp256k1.secp256k1_ec_pubkey_parse(
_libsecp256k1.ctx, pubkey_ptr, pk_bytes, len(pk_bytes))
if 1 != ret:
raise Exception(f'public key could not be parsed or is invalid: {pk_bytes.hex()!r}')
return pubkey_ptr
def _to_libsecp256k1_xonly_pubkey_ptr(self):
"""pointer to `secp256k1_xonly_pubkey` C struct"""
if not ecc_fast.HAS_SCHNORR:
raise LibModuleMissing(
'libsecp256k1 library found but it was built '
'without required modules (--enable-module-schnorrsig --enable-module-extrakeys)')
pubkey_ptr = create_string_buffer(64)
pk_bytes = self.get_public_key_bytes(compressed=True)[1:]
ret = _libsecp256k1.secp256k1_xonly_pubkey_parse(
_libsecp256k1.ctx, pubkey_ptr, pk_bytes)
if 1 != ret:
raise Exception(f'public key could not be parsed or is invalid: {pk_bytes.hex()!r}')
return pubkey_ptr
@classmethod
def _from_libsecp256k1_pubkey_ptr(cls, pubkey) -> 'ECPubkey':
pubkey_serialized = create_string_buffer(65)
pubkey_size = c_size_t(65)
_libsecp256k1.secp256k1_ec_pubkey_serialize(
_libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey, SECP256K1_EC_UNCOMPRESSED)
return ECPubkey(bytes(pubkey_serialized))
def __repr__(self):
if self.is_at_infinity():
return f"<ECPubkey infinity>"
return f"<ECPubkey {self.get_public_key_hex()}>"
def __mul__(self, other: int):
if not isinstance(other, int):
raise TypeError('multiplication not defined for ECPubkey and {}'.format(type(other)))
other %= CURVE_ORDER
if self.is_at_infinity() or other == 0:
return POINT_AT_INFINITY
pubkey = self._to_libsecp256k1_pubkey_ptr()
ret = _libsecp256k1.secp256k1_ec_pubkey_tweak_mul(_libsecp256k1.ctx, pubkey, other.to_bytes(32, byteorder="big"))
if 1 != ret:
return POINT_AT_INFINITY
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey)
def __rmul__(self, other: int):
return self * other
def __add__(self, other):
if not isinstance(other, ECPubkey):
raise TypeError('addition not defined for ECPubkey and {}'.format(type(other)))
if self.is_at_infinity(): return other
if other.is_at_infinity(): return self
pubkey1 = self._to_libsecp256k1_pubkey_ptr()
pubkey2 = other._to_libsecp256k1_pubkey_ptr()
pubkey_sum = create_string_buffer(64)
pubkey1 = cast(pubkey1, c_char_p)
pubkey2 = cast(pubkey2, c_char_p)
array_of_pubkey_ptrs = (c_char_p * 2)(pubkey1, pubkey2)
ret = _libsecp256k1.secp256k1_ec_pubkey_combine(_libsecp256k1.ctx, pubkey_sum, array_of_pubkey_ptrs, 2)
if 1 != ret:
return POINT_AT_INFINITY
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey_sum)
def __eq__(self, other) -> bool:
if not isinstance(other, ECPubkey):
return False
return self.point() == other.point()
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash(self.point())
def __lt__(self, other):
if not isinstance(other, ECPubkey):
raise TypeError('comparison not defined for ECPubkey and {}'.format(type(other)))
p1 = ((self.x() or 0), (self.y() or 0))
p2 = ((other.x() or 0), (other.y() or 0))
return p1 < p2
def ecdsa_verify_recoverable(self, sig65: bytes, msg32: bytes) -> bool:
try:
public_key, _compressed, _txin_type_guess = self.from_ecdsa_sig65(sig65, msg32)
except Exception:
return False
# check public key
if public_key != self:
return False
# check message
return self.ecdsa_verify(sig65[1:], msg32)
def ecdsa_verify(
self,
sig64: bytes,
msg32: bytes,
*,
enforce_low_s: bool = True, # policy/standardness rule
) -> bool:
assert_bytes(sig64)
if len(sig64) != 64:
return False
if not (isinstance(msg32, bytes) and len(msg32) == 32):
return False
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig64)
if 1 != ret:
return False
if not enforce_low_s:
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
pubkey = self._to_libsecp256k1_pubkey_ptr()
if 1 != _libsecp256k1.secp256k1_ecdsa_verify(_libsecp256k1.ctx, sig, msg32, pubkey):
return False
return True
def schnorr_verify(self, sig64: bytes, msg32: bytes) -> bool:
assert isinstance(sig64, bytes), type(sig64)
assert len(sig64) == 64, len(sig64)
assert isinstance(msg32, bytes), type(msg32)
assert len(msg32) == 32, len(msg32)
if not ecc_fast.HAS_SCHNORR:
raise LibModuleMissing(
'libsecp256k1 library found but it was built '
'without required modules (--enable-module-schnorrsig --enable-module-extrakeys)')
msglen = 32
pubkey = self._to_libsecp256k1_xonly_pubkey_ptr()
if 1 != _libsecp256k1.secp256k1_schnorrsig_verify(_libsecp256k1.ctx, sig64, msg32, msglen, pubkey):
return False
return True
@classmethod
def order(cls) -> int:
return CURVE_ORDER
def is_at_infinity(self) -> bool:
return self == POINT_AT_INFINITY
@classmethod
def is_pubkey_bytes(cls, b: bytes) -> bool:
try:
ECPubkey(b)
return True
except Exception:
return False
def has_even_y(self) -> bool:
return self.y() % 2 == 0
GENERATOR = ECPubkey(bytes.fromhex('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798'
'483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'))
CURVE_ORDER = 0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_BAAEDCE6_AF48A03B_BFD25E8C_D0364141
POINT_AT_INFINITY = ECPubkey(None)
def is_secret_within_curve_range(secret: Union[int, bytes]) -> bool:
if isinstance(secret, bytes):
secret = string_to_number(secret)
return 0 < secret < CURVE_ORDER
class ECPrivkey(ECPubkey):
def __init__(self, privkey_bytes: bytes):
assert_bytes(privkey_bytes)
if len(privkey_bytes) != 32:
raise Exception('unexpected size for secret. should be 32 bytes, not {}'.format(len(privkey_bytes)))
secret = string_to_number(privkey_bytes)
if not is_secret_within_curve_range(secret):
raise InvalidECPointException('Invalid secret scalar (not within curve order)')
self.secret_scalar = secret
pubkey = GENERATOR * secret
super().__init__(pubkey.get_public_key_bytes(compressed=False))
@classmethod
def from_secret_scalar(cls, secret_scalar: int) -> 'ECPrivkey':
secret_bytes = int.to_bytes(secret_scalar, length=32, byteorder='big', signed=False)
return ECPrivkey(secret_bytes)
@classmethod
def from_arbitrary_size_secret(cls, privkey_bytes: bytes) -> 'ECPrivkey':
"""This method is only for legacy reasons. Do not introduce new code that uses it.
Unlike the default constructor, this method does not require len(privkey_bytes) == 32,
and the secret does not need to be within the curve order either.
"""
return ECPrivkey(cls.normalize_secret_bytes(privkey_bytes))
@classmethod
def normalize_secret_bytes(cls, privkey_bytes: bytes) -> bytes:
scalar = string_to_number(privkey_bytes) % CURVE_ORDER
if scalar == 0:
raise Exception('invalid EC private key scalar: zero')
privkey_32bytes = int.to_bytes(scalar, length=32, byteorder='big', signed=False)
return privkey_32bytes
def __repr__(self):
return f"<ECPrivkey {self.get_public_key_hex()}>"
@classmethod
def generate_random_key(cls) -> 'ECPrivkey':
randint = secrets.randbelow(CURVE_ORDER - 1) + 1
ephemeral_exponent = int.to_bytes(randint, length=32, byteorder='big', signed=False)
return ECPrivkey(ephemeral_exponent)
def get_secret_bytes(self) -> bytes:
return int.to_bytes(self.secret_scalar, length=32, byteorder='big', signed=False)
def ecdsa_sign(self, msg32: bytes, *, sigencode=None) -> bytes:
if not (isinstance(msg32, bytes) and len(msg32) == 32):
raise Exception("msg32 to be signed must be bytes, and 32 bytes exactly")
if sigencode is None:
sigencode = ecdsa_sig64_from_r_and_s
privkey_bytes = self.secret_scalar.to_bytes(32, byteorder="big")
nonce_function = None
sig = create_string_buffer(64)
def sign_with_extra_entropy(extra_entropy):
ret = _libsecp256k1.secp256k1_ecdsa_sign(
_libsecp256k1.ctx, sig, msg32, privkey_bytes,
nonce_function, extra_entropy)
if 1 != ret:
raise Exception('the nonce generation function failed, or the private key was invalid')
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
r, s = sign_with_extra_entropy(extra_entropy=None)
if ENABLE_ECDSA_R_VALUE_GRINDING:
counter = 0
while r >= 2**255: # grind for low R value https://github.com/bitcoin/bitcoin/pull/13666
counter += 1
extra_entropy = counter.to_bytes(32, byteorder="little")
r, s = sign_with_extra_entropy(extra_entropy=extra_entropy)
sig64 = ecdsa_sig64_from_r_and_s(r, s)
if not self.ecdsa_verify(sig64, msg32):
raise Exception("sanity check failed: signature we just created does not verify!")
sig = sigencode(r, s)
return sig
def schnorr_sign(self, msg32: bytes, *, aux_rand32: bytes = None) -> bytes:
"""Creates a BIP-340 schnorr signature for the given message (hash)
and using the optional auxiliary random data.
note: msg32 is supposed to be a 32 byte hash of the message to be signed.
The BIP recommends using bip340_tagged_hash for hashing the message.
"""
assert isinstance(msg32, bytes), type(msg32)
assert len(msg32) == 32, len(msg32)
if aux_rand32 is None:
aux_rand32 = bytes(32)
assert isinstance(aux_rand32, bytes), type(aux_rand32)
assert len(aux_rand32) == 32, len(aux_rand32)
if not ecc_fast.HAS_SCHNORR:
raise LibModuleMissing(
'libsecp256k1 library found but it was built '
'without required modules (--enable-module-schnorrsig --enable-module-extrakeys)')
# construct "keypair" obj
privkey_bytes = self.secret_scalar.to_bytes(32, byteorder="big")
keypair = create_string_buffer(96)
ret = _libsecp256k1.secp256k1_keypair_create(_libsecp256k1.ctx, keypair, privkey_bytes)
if 1 != ret:
raise Exception('secret key was invalid')
# sign msg and verify sig
sig64 = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_schnorrsig_sign32(
_libsecp256k1.ctx, sig64, msg32, keypair, aux_rand32)
sig64 = bytes(sig64)
if 1 != ret:
raise Exception('signing failure')
if not self.schnorr_verify(sig64, msg32):
raise Exception("sanity check failed: signature we just created does not verify!")
return sig64
def ecdsa_sign_recoverable(self, msg32: bytes, *, is_compressed: bool) -> bytes:
assert len(msg32) == 32, len(msg32)
def bruteforce_recid(sig64: bytes):
for recid in range(4):
sig65 = construct_ecdsa_sig65(sig64, recid, is_compressed=is_compressed)
if not self.ecdsa_verify_recoverable(sig65, msg32):
continue
return sig65, recid
else:
raise Exception("error: cannot sign message. no recid fits..")
sig64 = self.ecdsa_sign(msg32, sigencode=ecdsa_sig64_from_r_and_s)
sig65, recid = bruteforce_recid(sig64)
return sig65
def construct_ecdsa_sig65(sig64: bytes, recid: int, *, is_compressed: bool) -> bytes:
comp = 4 if is_compressed else 0
return bytes([27 + recid + comp]) + sig64