You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

227 lines
9.6 KiB

import random
from typing import List, Tuple, Optional, Sequence, Dict
from collections import defaultdict
from .util import profiler
from .lnutil import NoPathFound
PART_PENALTY = 1.0 # 1.0 results in avoiding splits
MIN_PART_MSAT = 10_000_000 # we don't want to split indefinitely
# these parameters determine the granularity of the newly suggested configurations
REDISTRIBUTION_FRACTION = 10
SPLIT_FRACTION = 10
# these parameters affect the computational work in the probabilistic algorithm
STARTING_CONFIGS = 30
CANDIDATES_PER_LEVEL = 20
REDISTRIBUTE = 5
def unique_hierarchy(hierarchy: Dict[int, List[Dict[bytes, int]]]) -> Dict[int, List[Dict[bytes, int]]]:
new_hierarchy = defaultdict(list)
for number_parts, configs in hierarchy.items():
unique_configs = set()
for config in configs:
# config dict can be out of order, so sort, otherwise not unique
unique_configs.add(tuple((c, config[c]) for c in sorted(config.keys())))
for unique_config in unique_configs:
new_hierarchy[number_parts].append(
{t[0]: t[1] for t in unique_config})
return new_hierarchy
def number_nonzero_parts(configuration: Dict[bytes, int]):
return len([v for v in configuration.values() if v])
def create_starting_split_hierarchy(amount_msat: int, channels_with_funds: Dict[bytes, int]):
"""Distributes the amount to send to a single or more channels in several
ways (randomly)."""
# TODO: find all possible starting configurations deterministically
# could try all permutations
split_hierarchy = defaultdict(list)
channels_order = list(channels_with_funds.keys())
for _ in range(STARTING_CONFIGS):
# shuffle to have different starting points
random.shuffle(channels_order)
configuration = {}
amount_added = 0
for c in channels_order:
s = channels_with_funds[c]
if amount_added == amount_msat:
configuration[c] = 0
else:
amount_to_add = amount_msat - amount_added
amt = min(s, amount_to_add)
configuration[c] = amt
amount_added += amt
if amount_added != amount_msat:
raise NoPathFound("Channels don't have enough sending capacity.")
split_hierarchy[number_nonzero_parts(configuration)].append(configuration)
return unique_hierarchy(split_hierarchy)
def balances_are_not_ok(proposed_balance_from, channel_from, proposed_balance_to, channel_to, channels_with_funds):
check = (
proposed_balance_to < MIN_PART_MSAT or
proposed_balance_to > channels_with_funds[channel_to] or
proposed_balance_from < MIN_PART_MSAT or
proposed_balance_from > channels_with_funds[channel_from]
)
return check
def propose_new_configuration(channels_with_funds: Dict[bytes, int], configuration: Dict[bytes, int],
amount_msat: int, preserve_number_parts=True) -> Dict[bytes, int]:
"""Randomly alters a split configuration. If preserve_number_parts, the
configuration stays within the same class of number of splits."""
# there are three basic operations to reach different split configurations:
# redistribute, split, swap
def redistribute(config: dict):
# we redistribute the amount from a nonzero channel to a nonzero channel
redistribution_amount = amount_msat // REDISTRIBUTION_FRACTION
nonzero = [ck for ck, cv in config.items() if
cv >= redistribution_amount]
if len(nonzero) == 1: # we only have a single channel, so we can't redistribute
return config
channel_from = random.choice(nonzero)
channel_to = random.choice(nonzero)
if channel_from == channel_to:
return config
proposed_balance_from = config[channel_from] - redistribution_amount
proposed_balance_to = config[channel_to] + redistribution_amount
if balances_are_not_ok(proposed_balance_from, channel_from, proposed_balance_to, channel_to, channels_with_funds):
return config
else:
config[channel_from] = proposed_balance_from
config[channel_to] = proposed_balance_to
assert sum([cv for cv in config.values()]) == amount_msat
return config
def split(config: dict):
# we split off a certain amount from a nonzero channel and put it into a
# zero channel
nonzero = [ck for ck, cv in config.items() if cv != 0]
zero = [ck for ck, cv in config.items() if cv == 0]
try:
channel_from = random.choice(nonzero)
channel_to = random.choice(zero)
except IndexError:
return config
delta = config[channel_from] // SPLIT_FRACTION
proposed_balance_from = config[channel_from] - delta
proposed_balance_to = config[channel_to] + delta
if balances_are_not_ok(proposed_balance_from, channel_from, proposed_balance_to, channel_to, channels_with_funds):
return config
else:
config[channel_from] = proposed_balance_from
config[channel_to] = proposed_balance_to
assert sum([cv for cv in config.values()]) == amount_msat
return config
def swap(config: dict):
# we swap the amounts from a single channel with another channel
nonzero = [ck for ck, cv in config.items() if cv != 0]
all = list(config.keys())
channel_from = random.choice(nonzero)
channel_to = random.choice(all)
proposed_balance_to = config[channel_from]
proposed_balance_from = config[channel_to]
if balances_are_not_ok(proposed_balance_from, channel_from, proposed_balance_to, channel_to, channels_with_funds):
return config
else:
config[channel_to] = proposed_balance_to
config[channel_from] = proposed_balance_from
return config
initial_number_parts = number_nonzero_parts(configuration)
for _ in range(REDISTRIBUTE):
configuration = redistribute(configuration)
if not preserve_number_parts and number_nonzero_parts(
configuration) == initial_number_parts:
configuration = split(configuration)
configuration = swap(configuration)
return configuration
@profiler
def suggest_splits(amount_msat: int, channels_with_funds, exclude_single_parts=True) -> Sequence[Tuple[Dict[bytes, int], float]]:
"""Creates split configurations for a payment over channels. Single channel
payments are excluded by default."""
def rate_configuration(config: dict) -> float:
"""Defines an objective function to rate a split configuration.
We calculate the normalized L2 norm for a split configuration and
add a part penalty for each nonzero amount. The consequence is that
amounts that are equally distributed and have less parts are rated
lowest."""
F = 0
amount = sum([v for v in config.values()])
for channel, value in config.items():
if value:
value /= amount # normalize
F += value * value + PART_PENALTY * PART_PENALTY
return F
def rated_sorted_configurations(hierarchy: dict) -> Sequence[Tuple[Dict[bytes, int], float]]:
"""Cleans up duplicate splittings, rates and sorts them according to
the rating. A lower rating is a better configuration."""
hierarchy = unique_hierarchy(hierarchy)
rated_configs = []
for level, configs in hierarchy.items():
for config in configs:
rated_configs.append((config, rate_configuration(config)))
sorted_rated_configs = sorted(rated_configs, key=lambda c: c[1], reverse=False)
return sorted_rated_configs
# create initial guesses
split_hierarchy = create_starting_split_hierarchy(amount_msat, channels_with_funds)
# randomize initial guesses
MAX_PARTS = 5
# generate splittings of different split levels up to number of channels
for level in range(2, min(MAX_PARTS, len(channels_with_funds) + 1)):
# generate a set of random configurations for each level
for _ in range(CANDIDATES_PER_LEVEL):
configurations = unique_hierarchy(split_hierarchy).get(level, None)
if configurations: # we have a splitting of the desired number of parts
configuration = random.choice(configurations)
# generate new splittings preserving the number of parts
configuration = propose_new_configuration(
channels_with_funds, configuration, amount_msat,
preserve_number_parts=True)
else:
# go one level lower and look for valid splittings,
# try to go one level higher by splitting a single outgoing amount
configurations = unique_hierarchy(split_hierarchy).get(level - 1, None)
if not configurations:
continue
configuration = random.choice(configurations)
# generate new splittings going one level higher in the number of parts
configuration = propose_new_configuration(
channels_with_funds, configuration, amount_msat,
preserve_number_parts=False)
# add the newly found configuration (doesn't matter if nothing changed)
split_hierarchy[number_nonzero_parts(configuration)].append(configuration)
if exclude_single_parts:
# we only want to return configurations that have at least two parts
try:
del split_hierarchy[1]
except:
pass
return rated_sorted_configurations(split_hierarchy)