You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
619 lines
21 KiB
619 lines
21 KiB
#!/usr/bin/env python |
|
# |
|
# Electrum - lightweight Bitcoin client |
|
# Copyright (C) 2011 thomasv@gitorious |
|
# |
|
# This program is free software: you can redistribute it and/or modify |
|
# it under the terms of the GNU General Public License as published by |
|
# the Free Software Foundation, either version 3 of the License, or |
|
# (at your option) any later version. |
|
# |
|
# This program is distributed in the hope that it will be useful, |
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
# GNU General Public License for more details. |
|
# |
|
# You should have received a copy of the GNU General Public License |
|
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
|
|
|
import hashlib, base64, ecdsa, re |
|
|
|
|
|
def rev_hex(s): |
|
return s.decode('hex')[::-1].encode('hex') |
|
|
|
def int_to_hex(i, length=1): |
|
s = hex(i)[2:].rstrip('L') |
|
s = "0"*(2*length - len(s)) + s |
|
return rev_hex(s) |
|
|
|
def var_int(i): |
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer |
|
if i<0xfd: |
|
return int_to_hex(i) |
|
elif i<=0xffff: |
|
return "fd"+int_to_hex(i,2) |
|
elif i<=0xffffffff: |
|
return "fe"+int_to_hex(i,4) |
|
else: |
|
return "ff"+int_to_hex(i,8) |
|
|
|
def op_push(i): |
|
if i<0x4c: |
|
return int_to_hex(i) |
|
elif i<0xff: |
|
return '4c' + int_to_hex(i) |
|
elif i<0xffff: |
|
return '4d' + int_to_hex(i,2) |
|
else: |
|
return '4e' + int_to_hex(i,4) |
|
|
|
|
|
|
|
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest() |
|
hash_encode = lambda x: x[::-1].encode('hex') |
|
hash_decode = lambda x: x.decode('hex')[::-1] |
|
|
|
|
|
# pywallet openssl private key implementation |
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False): |
|
if compressed: |
|
key = '3081d30201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107042102' + \ |
|
'%064x' % _Gx + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a124032200' |
|
else: |
|
key = '308201130201010420' + \ |
|
'%064x' % pkey.secret + \ |
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \ |
|
'%064x' % _p + \ |
|
'3006040100040107044104' + \ |
|
'%064x' % _Gx + \ |
|
'%064x' % _Gy + \ |
|
'022100' + \ |
|
'%064x' % _r + \ |
|
'020101a144034200' |
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed) |
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False): |
|
# public keys are 65 bytes long (520 bits) |
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate |
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed |
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd |
|
if compressed: |
|
if pubkey.point.y() & 1: |
|
key = '03' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '02' + '%064x' % pubkey.point.x() |
|
else: |
|
key = '04' + \ |
|
'%064x' % pubkey.point.x() + \ |
|
'%064x' % pubkey.point.y() |
|
|
|
return key.decode('hex') |
|
|
|
# end pywallet openssl private key implementation |
|
|
|
|
|
|
|
############ functions from pywallet ##################### |
|
|
|
def hash_160(public_key): |
|
try: |
|
md = hashlib.new('ripemd160') |
|
md.update(hashlib.sha256(public_key).digest()) |
|
return md.digest() |
|
except: |
|
import ripemd |
|
md = ripemd.new(hashlib.sha256(public_key).digest()) |
|
return md.digest() |
|
|
|
|
|
def public_key_to_bc_address(public_key): |
|
h160 = hash_160(public_key) |
|
return hash_160_to_bc_address(h160) |
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0): |
|
vh160 = chr(addrtype) + h160 |
|
h = Hash(vh160) |
|
addr = vh160 + h[0:4] |
|
return b58encode(addr) |
|
|
|
def bc_address_to_hash_160(addr): |
|
bytes = b58decode(addr, 25) |
|
return ord(bytes[0]), bytes[1:21] |
|
|
|
def encode_point(pubkey, compressed=False): |
|
order = generator_secp256k1.order() |
|
p = pubkey.pubkey.point |
|
x_str = ecdsa.util.number_to_string(p.x(), order) |
|
y_str = ecdsa.util.number_to_string(p.y(), order) |
|
if compressed: |
|
return chr(2 + (p.y() & 1)) + x_str |
|
else: |
|
return chr(4) + pubkey.to_string() #x_str + y_str |
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' |
|
__b58base = len(__b58chars) |
|
|
|
def b58encode(v): |
|
""" encode v, which is a string of bytes, to base58.""" |
|
|
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += (256**i) * ord(c) |
|
|
|
result = '' |
|
while long_value >= __b58base: |
|
div, mod = divmod(long_value, __b58base) |
|
result = __b58chars[mod] + result |
|
long_value = div |
|
result = __b58chars[long_value] + result |
|
|
|
# Bitcoin does a little leading-zero-compression: |
|
# leading 0-bytes in the input become leading-1s |
|
nPad = 0 |
|
for c in v: |
|
if c == '\0': nPad += 1 |
|
else: break |
|
|
|
return (__b58chars[0]*nPad) + result |
|
|
|
def b58decode(v, length): |
|
""" decode v into a string of len bytes.""" |
|
long_value = 0L |
|
for (i, c) in enumerate(v[::-1]): |
|
long_value += __b58chars.find(c) * (__b58base**i) |
|
|
|
result = '' |
|
while long_value >= 256: |
|
div, mod = divmod(long_value, 256) |
|
result = chr(mod) + result |
|
long_value = div |
|
result = chr(long_value) + result |
|
|
|
nPad = 0 |
|
for c in v: |
|
if c == __b58chars[0]: nPad += 1 |
|
else: break |
|
|
|
result = chr(0)*nPad + result |
|
if length is not None and len(result) != length: |
|
return None |
|
|
|
return result |
|
|
|
|
|
def EncodeBase58Check(vchIn): |
|
hash = Hash(vchIn) |
|
return b58encode(vchIn + hash[0:4]) |
|
|
|
def DecodeBase58Check(psz): |
|
vchRet = b58decode(psz, None) |
|
key = vchRet[0:-4] |
|
csum = vchRet[-4:] |
|
hash = Hash(key) |
|
cs32 = hash[0:4] |
|
if cs32 != csum: |
|
return None |
|
else: |
|
return key |
|
|
|
def PrivKeyToSecret(privkey): |
|
return privkey[9:9+32] |
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0): |
|
vchIn = chr((addrtype+128)&255) + secret |
|
if compressed: vchIn += '\01' |
|
return EncodeBase58Check(vchIn) |
|
|
|
def ASecretToSecret(key, addrtype=0): |
|
vch = DecodeBase58Check(key) |
|
if vch and vch[0] == chr((addrtype+128)&255): |
|
return vch[1:] |
|
else: |
|
return False |
|
|
|
def regenerate_key(sec): |
|
b = ASecretToSecret(sec) |
|
if not b: |
|
return False |
|
b = b[0:32] |
|
secret = int('0x' + b.encode('hex'), 16) |
|
return EC_KEY(secret) |
|
|
|
def GetPubKey(pubkey, compressed=False): |
|
return i2o_ECPublicKey(pubkey, compressed) |
|
|
|
def GetPrivKey(pkey, compressed=False): |
|
return i2d_ECPrivateKey(pkey, compressed) |
|
|
|
def GetSecret(pkey): |
|
return ('%064x' % pkey.secret).decode('hex') |
|
|
|
def is_compressed(sec): |
|
b = ASecretToSecret(sec) |
|
return len(b) == 33 |
|
|
|
|
|
def address_from_private_key(sec): |
|
# rebuild public key from private key, compressed or uncompressed |
|
pkey = regenerate_key(sec) |
|
assert pkey |
|
|
|
# figure out if private key is compressed |
|
compressed = is_compressed(sec) |
|
|
|
# rebuild private and public key from regenerated secret |
|
private_key = GetPrivKey(pkey, compressed) |
|
public_key = GetPubKey(pkey.pubkey, compressed) |
|
address = public_key_to_bc_address(public_key) |
|
return address |
|
|
|
|
|
########### end pywallet functions ####################### |
|
|
|
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10 |
|
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL |
|
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L |
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L |
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L |
|
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L |
|
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L |
|
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b ) |
|
generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r ) |
|
oid_secp256k1 = (1,3,132,0,10) |
|
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) |
|
|
|
class EC_KEY(object): |
|
def __init__( self, secret ): |
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) |
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) |
|
self.secret = secret |
|
|
|
|
|
###################################### BIP32 ############################## |
|
|
|
def bip32_init(seed): |
|
import hmac |
|
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() |
|
|
|
print "seed", seed.encode('hex') |
|
master_secret = I[0:32] |
|
master_chain = I[32:] |
|
|
|
# public key |
|
curve = SECP256k1 |
|
master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 ) |
|
master_public_key = master_private_key.get_verifying_key() |
|
K = master_public_key.to_string() |
|
K_compressed = GetPubKey(master_public_key.pubkey,True) |
|
return master_secret, master_chain, K, K_compressed |
|
|
|
|
|
def CKD(k, c, n): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
keypair = EC_KEY(string_to_number(k)) |
|
K = GetPubKey(keypair.pubkey,True) |
|
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order ) |
|
c_n = I[32:] |
|
return k_n, c_n |
|
|
|
|
|
def CKD_prime(K, c, n): |
|
import hmac |
|
from ecdsa.util import string_to_number, number_to_string |
|
order = generator_secp256k1.order() |
|
|
|
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) |
|
K_compressed = GetPubKey(K_public_key.pubkey,True) |
|
|
|
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() |
|
|
|
#pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point ) |
|
public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 ) |
|
K_n = public_key.to_string() |
|
K_n_compressed = GetPubKey(public_key.pubkey,True) |
|
c_n = I[32:] |
|
|
|
return K_n, K_n_compressed, c_n |
|
|
|
|
|
|
|
|
|
|
|
################################## transactions |
|
|
|
|
|
|
|
def raw_tx( inputs, outputs, for_sig = None ): |
|
|
|
s = int_to_hex(1,4) # version |
|
s += var_int( len(inputs) ) # number of inputs |
|
for i in range(len(inputs)): |
|
txin = inputs[i] |
|
s += txin['tx_hash'].decode('hex')[::-1].encode('hex') # prev hash |
|
s += int_to_hex(txin['index'],4) # prev index |
|
|
|
if for_sig is None: |
|
pubkeysig = txin.get('pubkeysig') |
|
if pubkeysig: |
|
pubkey, sig = pubkeysig[0] |
|
sig = sig + chr(1) # hashtype |
|
script = op_push( len(sig)) |
|
script += sig.encode('hex') |
|
script += op_push( len(pubkey)) |
|
script += pubkey.encode('hex') |
|
else: |
|
signatures = txin['signatures'] |
|
pubkeys = txin['pubkeys'] |
|
script = '00' # op_0 |
|
for sig in signatures: |
|
sig = sig + '01' |
|
script += op_push(len(sig)/2) |
|
script += sig |
|
|
|
redeem_script = multisig_script(pubkeys,2) |
|
script += op_push(len(redeem_script)/2) |
|
script += redeem_script |
|
|
|
elif for_sig==i: |
|
if txin.get('redeemScript'): |
|
script = txin['redeemScript'] # p2sh uses the inner script |
|
else: |
|
script = txin['raw_output_script'] # scriptsig |
|
else: |
|
script='' |
|
s += var_int( len(script)/2 ) # script length |
|
s += script |
|
s += "ffffffff" # sequence |
|
|
|
s += var_int( len(outputs) ) # number of outputs |
|
for output in outputs: |
|
addr, amount = output |
|
s += int_to_hex( amount, 8) # amount |
|
addrtype, hash_160 = bc_address_to_hash_160(addr) |
|
if addrtype == 0: |
|
script = '76a9' # op_dup, op_hash_160 |
|
script += '14' # push 0x14 bytes |
|
script += hash_160.encode('hex') |
|
script += '88ac' # op_equalverify, op_checksig |
|
elif addrtype == 5: |
|
script = 'a9' # op_hash_160 |
|
script += '14' # push 0x14 bytes |
|
script += hash_160.encode('hex') |
|
script += '87' # op_equal |
|
else: |
|
raise |
|
|
|
s += var_int( len(script)/2 ) # script length |
|
s += script # script |
|
s += int_to_hex(0,4) # lock time |
|
if for_sig is not None and for_sig != -1: |
|
s += int_to_hex(1, 4) # hash type |
|
return s |
|
|
|
|
|
|
|
|
|
def multisig_script(public_keys, num=None): |
|
# supports only "2 of 2", and "2 of 3" transactions |
|
n = len(public_keys) |
|
|
|
if num is None: |
|
num = n |
|
|
|
assert num <= n and n <= 3 and n >= 2 |
|
|
|
if num==2: |
|
s = '52' |
|
elif num == 3: |
|
s = '53' |
|
else: |
|
raise |
|
|
|
for k in public_keys: |
|
s += var_int(len(k)/2) |
|
s += k |
|
if n==2: |
|
s += '52' |
|
elif n==3: |
|
s += '53' |
|
else: |
|
raise |
|
s += 'ae' |
|
return s |
|
|
|
|
|
|
|
class Transaction: |
|
|
|
def __init__(self, raw): |
|
self.raw = raw |
|
self.deserialize() |
|
self.inputs = self.d['inputs'] |
|
self.outputs = self.d['outputs'] |
|
self.outputs = map(lambda x: (x['address'],x['value']), self.outputs) |
|
|
|
@classmethod |
|
def from_io(klass, inputs, outputs): |
|
raw = raw_tx(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign |
|
self = klass(raw) |
|
self.inputs = inputs |
|
self.outputs = outputs |
|
return self |
|
|
|
def __str__(self): |
|
return self.raw |
|
|
|
def for_sig(self,i): |
|
return raw_tx(self.inputs, self.outputs, for_sig = i) |
|
|
|
def hash(self): |
|
return Hash(self.raw.decode('hex') )[::-1].encode('hex') |
|
|
|
def sign(self, private_keys): |
|
import deserialize |
|
|
|
for i in range(len(self.inputs)): |
|
txin = self.inputs[i] |
|
|
|
if txin.get('redeemScript'): |
|
# 1 parse the redeem script |
|
num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript')) |
|
self.inputs[i]["pubkeys"] = redeem_pubkeys |
|
|
|
# build list of public/private keys |
|
keypairs = {} |
|
for sec in private_keys.values(): |
|
compressed = is_compressed(sec) |
|
pkey = regenerate_key(sec) |
|
pubkey = GetPubKey(pkey.pubkey, compressed) |
|
keypairs[ pubkey.encode('hex') ] = sec |
|
|
|
# list of signatures |
|
signatures = txin.get("signatures",[]) |
|
|
|
# check if we have a key corresponding to the redeem script |
|
for pubkey, privkey in keypairs.items(): |
|
if pubkey in redeem_pubkeys: |
|
# add signature |
|
compressed = is_compressed(sec) |
|
pkey = regenerate_key(sec) |
|
secexp = pkey.secret |
|
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
|
|
tx = raw_tx( self.inputs, self.outputs, for_sig = i ) |
|
sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der ) |
|
assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
signatures.append( sig.encode('hex') ) |
|
|
|
# for p2sh, pubkeysig is a tuple (may be incomplete) |
|
self.inputs[i]["signatures"] = signatures |
|
|
|
else: |
|
sec = private_keys[txin['address']] |
|
compressed = is_compressed(sec) |
|
pkey = regenerate_key(sec) |
|
secexp = pkey.secret |
|
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) |
|
public_key = private_key.get_verifying_key() |
|
pkey = EC_KEY(secexp) |
|
pubkey = GetPubKey(pkey.pubkey, compressed) |
|
tx = raw_tx( self.inputs, self.outputs, for_sig = i ) |
|
sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der ) |
|
assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
|
|
self.inputs[i]["pubkeysig"] = [(pubkey, sig)] |
|
|
|
self.raw = raw_tx( self.inputs, self.outputs ) |
|
|
|
|
|
def deserialize(self): |
|
import deserialize |
|
vds = deserialize.BCDataStream() |
|
vds.write(self.raw.decode('hex')) |
|
self.d = deserialize.parse_Transaction(vds) |
|
return self.d |
|
|
|
|
|
|
|
|
|
def test_bip32(): |
|
seed = "ff000000000000000000000000000000".decode('hex') |
|
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) |
|
|
|
print "secret key", master_secret.encode('hex') |
|
print "chain code", master_chain.encode('hex') |
|
|
|
key_id = hash_160(master_public_key_compressed) |
|
print "keyid", key_id.encode('hex') |
|
print "base58" |
|
print "address", hash_160_to_bc_address(key_id) |
|
print "secret key", SecretToASecret(master_secret, True) |
|
|
|
print "-- m/0 --" |
|
k0, c0 = CKD(master_secret, master_chain, 0) |
|
print "secret", k0.encode('hex') |
|
print "chain", c0.encode('hex') |
|
print "secret key", SecretToASecret(k0, True) |
|
|
|
K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0) |
|
print "address", hash_160_to_bc_address(hash_160(K0_compressed)) |
|
|
|
print "-- m/0/1 --" |
|
K01, K01_compressed, c01 = CKD_prime(K0, c0, 1) |
|
print "address", hash_160_to_bc_address(hash_160(K01_compressed)) |
|
|
|
print "-- m/0/1/3 --" |
|
K013, K013_compressed, c013 = CKD_prime(K01, c01, 3) |
|
print "address", hash_160_to_bc_address(hash_160(K013_compressed)) |
|
|
|
print "-- m/0/1/3/7 --" |
|
K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7) |
|
print "address", hash_160_to_bc_address(hash_160(K0137_compressed)) |
|
|
|
|
|
def test_p2sh(): |
|
|
|
print "2 of 2" |
|
pubkeys = ["04e89a79651522201d756f14b1874ae49139cc984e5782afeca30ffe84e5e6b2cfadcfe9875c490c8a1a05a4debd715dd57471af8886ab5dfbb3959d97f087f77a", |
|
"0455cf4a3ab68a011b18cb0a86aae2b8e9cad6c6355476de05247c57a9632d127084ac7630ad89893b43c486c5a9f7ec6158fb0feb708fa9255d5c4d44bc0858f8"] |
|
s = multisig_script(pubkeys) |
|
print "address", hash_160_to_bc_address(hash_160(s.decode('hex')), 5) |
|
|
|
|
|
print "Gavin's tutorial: redeem p2sh: http://blockchain.info/tx-index/30888901" |
|
pubkey1 = "0491bba2510912a5bd37da1fb5b1673010e43d2c6d812c514e91bfa9f2eb129e1c183329db55bd868e209aac2fbc02cb33d98fe74bf23f0c235d6126b1d8334f86" |
|
pubkey2 = "04865c40293a680cb9c020e7b1e106d8c1916d3cef99aa431a56d253e69256dac09ef122b1a986818a7cb624532f062c1d1f8722084861c5c3291ccffef4ec6874" |
|
pubkey3 = "048d2455d2403e08708fc1f556002f1b6cd83f992d085097f9974ab08a28838f07896fbab08f39495e15fa6fad6edbfb1e754e35fa1c7844c41f322a1863d46213" |
|
pubkeys = [pubkey1, pubkey2, pubkey3] |
|
|
|
tx = Transaction.from_io( |
|
[{'tx_hash':'3c9018e8d5615c306d72397f8f5eef44308c98fb576a88e030c25456b4f3a7ac', 'index':0, |
|
'raw_output_script':'a914f815b036d9bbbce5e9f2a00abd1bf3dc91e9551087', 'redeemScript':multisig_script(pubkeys, 2)}], |
|
[('1GtpSrGhRGY5kkrNz4RykoqRQoJuG2L6DS',1000000)]) |
|
|
|
tx_for_sig = tx.for_sig(0) |
|
print "tx for sig", tx_for_sig |
|
|
|
signature1 = "304502200187af928e9d155c4b1ac9c1c9118153239aba76774f775d7c1f9c3e106ff33c0221008822b0f658edec22274d0b6ae9de10ebf2da06b1bbdaaba4e50eb078f39e3d78" |
|
signature2 = "30440220795f0f4f5941a77ae032ecb9e33753788d7eb5cb0c78d805575d6b00a1d9bfed02203e1f4ad9332d1416ae01e27038e945bc9db59c732728a383a6f1ed2fb99da7a4" |
|
|
|
for pubkey in pubkeys: |
|
import traceback, sys |
|
|
|
public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1) |
|
|
|
try: |
|
public_key.verify_digest( signature1.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
print True |
|
except ecdsa.keys.BadSignatureError: |
|
#traceback.print_exc(file=sys.stdout) |
|
print False |
|
|
|
try: |
|
public_key.verify_digest( signature2.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) |
|
print True |
|
except ecdsa.keys.BadSignatureError: |
|
#traceback.print_exc(file=sys.stdout) |
|
print False |
|
|
|
if __name__ == '__main__': |
|
#test_bip32() |
|
test_p2sh() |
|
|
|
|