You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
539 lines
16 KiB
539 lines
16 KiB
#!/usr/bin/env python |
|
# |
|
# Electrum - lightweight Bitcoin client |
|
# Copyright (C) 2015 Thomas Voegtlin |
|
# |
|
# Permission is hereby granted, free of charge, to any person |
|
# obtaining a copy of this software and associated documentation files |
|
# (the "Software"), to deal in the Software without restriction, |
|
# including without limitation the rights to use, copy, modify, merge, |
|
# publish, distribute, sublicense, and/or sell copies of the Software, |
|
# and to permit persons to whom the Software is furnished to do so, |
|
# subject to the following conditions: |
|
# |
|
# The above copyright notice and this permission notice shall be |
|
# included in all copies or substantial portions of the Software. |
|
# |
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
# SOFTWARE. |
|
|
|
# This module uses functions from TLSLite (public domain) |
|
# |
|
# TLSLite Authors: |
|
# Trevor Perrin |
|
# Martin von Loewis - python 3 port |
|
# Yngve Pettersen (ported by Paul Sokolovsky) - TLS 1.2 |
|
# |
|
|
|
"""Pure-Python RSA implementation.""" |
|
|
|
import os |
|
import math |
|
import hashlib |
|
|
|
|
|
def SHA1(x): |
|
return hashlib.sha1(x).digest() |
|
|
|
|
|
# ************************************************************************** |
|
# PRNG Functions |
|
# ************************************************************************** |
|
|
|
# Check that os.urandom works |
|
import zlib |
|
length = len(zlib.compress(os.urandom(1000))) |
|
assert length > 900 |
|
|
|
def getRandomBytes(howMany): |
|
b = bytearray(os.urandom(howMany)) |
|
assert len(b) == howMany |
|
return b |
|
|
|
prngName = "os.urandom" |
|
|
|
|
|
# ************************************************************************** |
|
# Converter Functions |
|
# ************************************************************************** |
|
|
|
def bytesToNumber(b): |
|
total = 0 |
|
multiplier = 1 |
|
for count in range(len(b)-1, -1, -1): |
|
byte = b[count] |
|
total += multiplier * byte |
|
multiplier *= 256 |
|
return total |
|
|
|
def numberToByteArray(n, howManyBytes=None): |
|
"""Convert an integer into a bytearray, zero-pad to howManyBytes. |
|
|
|
The returned bytearray may be smaller than howManyBytes, but will |
|
not be larger. The returned bytearray will contain a big-endian |
|
encoding of the input integer (n). |
|
""" |
|
if howManyBytes is None: |
|
howManyBytes = numBytes(n) |
|
b = bytearray(howManyBytes) |
|
for count in range(howManyBytes-1, -1, -1): |
|
b[count] = int(n % 256) |
|
n >>= 8 |
|
return b |
|
|
|
def mpiToNumber(mpi): #mpi is an openssl-format bignum string |
|
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number |
|
raise AssertionError() |
|
b = bytearray(mpi[4:]) |
|
return bytesToNumber(b) |
|
|
|
def numberToMPI(n): |
|
b = numberToByteArray(n) |
|
ext = 0 |
|
#If the high-order bit is going to be set, |
|
#add an extra byte of zeros |
|
if (numBits(n) & 0x7)==0: |
|
ext = 1 |
|
length = numBytes(n) + ext |
|
b = bytearray(4+ext) + b |
|
b[0] = (length >> 24) & 0xFF |
|
b[1] = (length >> 16) & 0xFF |
|
b[2] = (length >> 8) & 0xFF |
|
b[3] = length & 0xFF |
|
return bytes(b) |
|
|
|
|
|
# ************************************************************************** |
|
# Misc. Utility Functions |
|
# ************************************************************************** |
|
|
|
def numBits(n): |
|
if n==0: |
|
return 0 |
|
s = "%x" % n |
|
return ((len(s)-1)*4) + \ |
|
{'0':0, '1':1, '2':2, '3':2, |
|
'4':3, '5':3, '6':3, '7':3, |
|
'8':4, '9':4, 'a':4, 'b':4, |
|
'c':4, 'd':4, 'e':4, 'f':4, |
|
}[s[0]] |
|
|
|
def numBytes(n): |
|
if n==0: |
|
return 0 |
|
bits = numBits(n) |
|
return int(math.ceil(bits / 8.0)) |
|
|
|
# ************************************************************************** |
|
# Big Number Math |
|
# ************************************************************************** |
|
|
|
def getRandomNumber(low, high): |
|
if low >= high: |
|
raise AssertionError() |
|
howManyBits = numBits(high) |
|
howManyBytes = numBytes(high) |
|
lastBits = howManyBits % 8 |
|
while 1: |
|
bytes = getRandomBytes(howManyBytes) |
|
if lastBits: |
|
bytes[0] = bytes[0] % (1 << lastBits) |
|
n = bytesToNumber(bytes) |
|
if n >= low and n < high: |
|
return n |
|
|
|
def gcd(a,b): |
|
a, b = max(a,b), min(a,b) |
|
while b: |
|
a, b = b, a % b |
|
return a |
|
|
|
def lcm(a, b): |
|
return (a * b) // gcd(a, b) |
|
|
|
#Returns inverse of a mod b, zero if none |
|
#Uses Extended Euclidean Algorithm |
|
def invMod(a, b): |
|
c, d = a, b |
|
uc, ud = 1, 0 |
|
while c != 0: |
|
q = d // c |
|
c, d = d-(q*c), c |
|
uc, ud = ud - (q * uc), uc |
|
if d == 1: |
|
return ud % b |
|
return 0 |
|
|
|
|
|
def powMod(base, power, modulus): |
|
if power < 0: |
|
result = pow(base, power*-1, modulus) |
|
result = invMod(result, modulus) |
|
return result |
|
else: |
|
return pow(base, power, modulus) |
|
|
|
#Pre-calculate a sieve of the ~100 primes < 1000: |
|
def makeSieve(n): |
|
sieve = list(range(n)) |
|
for count in range(2, int(math.sqrt(n))+1): |
|
if sieve[count] == 0: |
|
continue |
|
x = sieve[count] * 2 |
|
while x < len(sieve): |
|
sieve[x] = 0 |
|
x += sieve[count] |
|
sieve = [x for x in sieve[2:] if x] |
|
return sieve |
|
|
|
sieve = makeSieve(1000) |
|
|
|
def isPrime(n, iterations=5, display=False): |
|
#Trial division with sieve |
|
for x in sieve: |
|
if x >= n: return True |
|
if n % x == 0: return False |
|
#Passed trial division, proceed to Rabin-Miller |
|
#Rabin-Miller implemented per Ferguson & Schneier |
|
#Compute s, t for Rabin-Miller |
|
if display: print("*", end=' ') |
|
s, t = n-1, 0 |
|
while s % 2 == 0: |
|
s, t = s//2, t+1 |
|
#Repeat Rabin-Miller x times |
|
a = 2 #Use 2 as a base for first iteration speedup, per HAC |
|
for count in range(iterations): |
|
v = powMod(a, s, n) |
|
if v==1: |
|
continue |
|
i = 0 |
|
while v != n-1: |
|
if i == t-1: |
|
return False |
|
else: |
|
v, i = powMod(v, 2, n), i+1 |
|
a = getRandomNumber(2, n) |
|
return True |
|
|
|
def getRandomPrime(bits, display=False): |
|
if bits < 10: |
|
raise AssertionError() |
|
#The 1.5 ensures the 2 MSBs are set |
|
#Thus, when used for p,q in RSA, n will have its MSB set |
|
# |
|
#Since 30 is lcm(2,3,5), we'll set our test numbers to |
|
#29 % 30 and keep them there |
|
low = ((2 ** (bits-1)) * 3) // 2 |
|
high = 2 ** bits - 30 |
|
p = getRandomNumber(low, high) |
|
p += 29 - (p % 30) |
|
while 1: |
|
if display: print(".", end=' ') |
|
p += 30 |
|
if p >= high: |
|
p = getRandomNumber(low, high) |
|
p += 29 - (p % 30) |
|
if isPrime(p, display=display): |
|
return p |
|
|
|
#Unused at the moment... |
|
def getRandomSafePrime(bits, display=False): |
|
if bits < 10: |
|
raise AssertionError() |
|
#The 1.5 ensures the 2 MSBs are set |
|
#Thus, when used for p,q in RSA, n will have its MSB set |
|
# |
|
#Since 30 is lcm(2,3,5), we'll set our test numbers to |
|
#29 % 30 and keep them there |
|
low = (2 ** (bits-2)) * 3//2 |
|
high = (2 ** (bits-1)) - 30 |
|
q = getRandomNumber(low, high) |
|
q += 29 - (q % 30) |
|
while 1: |
|
if display: print(".", end=' ') |
|
q += 30 |
|
if (q >= high): |
|
q = getRandomNumber(low, high) |
|
q += 29 - (q % 30) |
|
#Ideas from Tom Wu's SRP code |
|
#Do trial division on p and q before Rabin-Miller |
|
if isPrime(q, 0, display=display): |
|
p = (2 * q) + 1 |
|
if isPrime(p, display=display): |
|
if isPrime(q, display=display): |
|
return p |
|
|
|
|
|
class RSAKey(object): |
|
|
|
def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0): |
|
if (n and not e) or (e and not n): |
|
raise AssertionError() |
|
self.n = n |
|
self.e = e |
|
self.d = d |
|
self.p = p |
|
self.q = q |
|
self.dP = dP |
|
self.dQ = dQ |
|
self.qInv = qInv |
|
self.blinder = 0 |
|
self.unblinder = 0 |
|
|
|
def __len__(self): |
|
"""Return the length of this key in bits. |
|
|
|
@rtype: int |
|
""" |
|
return numBits(self.n) |
|
|
|
def hasPrivateKey(self): |
|
return self.d != 0 |
|
|
|
def hashAndSign(self, bytes): |
|
"""Hash and sign the passed-in bytes. |
|
|
|
This requires the key to have a private component. It performs |
|
a PKCS1-SHA1 signature on the passed-in data. |
|
|
|
@type bytes: str or L{bytearray} of unsigned bytes |
|
@param bytes: The value which will be hashed and signed. |
|
|
|
@rtype: L{bytearray} of unsigned bytes. |
|
@return: A PKCS1-SHA1 signature on the passed-in data. |
|
""" |
|
hashBytes = SHA1(bytearray(bytes)) |
|
prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes) |
|
sigBytes = self.sign(prefixedHashBytes) |
|
return sigBytes |
|
|
|
def hashAndVerify(self, sigBytes, bytes): |
|
"""Hash and verify the passed-in bytes with the signature. |
|
|
|
This verifies a PKCS1-SHA1 signature on the passed-in data. |
|
|
|
@type sigBytes: L{bytearray} of unsigned bytes |
|
@param sigBytes: A PKCS1-SHA1 signature. |
|
|
|
@type bytes: str or L{bytearray} of unsigned bytes |
|
@param bytes: The value which will be hashed and verified. |
|
|
|
@rtype: bool |
|
@return: Whether the signature matches the passed-in data. |
|
""" |
|
hashBytes = SHA1(bytearray(bytes)) |
|
|
|
# Try it with/without the embedded NULL |
|
prefixedHashBytes1 = self._addPKCS1SHA1Prefix(hashBytes, False) |
|
prefixedHashBytes2 = self._addPKCS1SHA1Prefix(hashBytes, True) |
|
result1 = self.verify(sigBytes, prefixedHashBytes1) |
|
result2 = self.verify(sigBytes, prefixedHashBytes2) |
|
return (result1 or result2) |
|
|
|
def sign(self, bytes): |
|
"""Sign the passed-in bytes. |
|
|
|
This requires the key to have a private component. It performs |
|
a PKCS1 signature on the passed-in data. |
|
|
|
@type bytes: L{bytearray} of unsigned bytes |
|
@param bytes: The value which will be signed. |
|
|
|
@rtype: L{bytearray} of unsigned bytes. |
|
@return: A PKCS1 signature on the passed-in data. |
|
""" |
|
if not self.hasPrivateKey(): |
|
raise AssertionError() |
|
paddedBytes = self._addPKCS1Padding(bytes, 1) |
|
m = bytesToNumber(paddedBytes) |
|
if m >= self.n: |
|
raise ValueError() |
|
c = self._rawPrivateKeyOp(m) |
|
sigBytes = numberToByteArray(c, numBytes(self.n)) |
|
return sigBytes |
|
|
|
def verify(self, sigBytes, bytes): |
|
"""Verify the passed-in bytes with the signature. |
|
|
|
This verifies a PKCS1 signature on the passed-in data. |
|
|
|
@type sigBytes: L{bytearray} of unsigned bytes |
|
@param sigBytes: A PKCS1 signature. |
|
|
|
@type bytes: L{bytearray} of unsigned bytes |
|
@param bytes: The value which will be verified. |
|
|
|
@rtype: bool |
|
@return: Whether the signature matches the passed-in data. |
|
""" |
|
if len(sigBytes) != numBytes(self.n): |
|
return False |
|
paddedBytes = self._addPKCS1Padding(bytes, 1) |
|
c = bytesToNumber(sigBytes) |
|
if c >= self.n: |
|
return False |
|
m = self._rawPublicKeyOp(c) |
|
checkBytes = numberToByteArray(m, numBytes(self.n)) |
|
return checkBytes == paddedBytes |
|
|
|
def encrypt(self, bytes): |
|
"""Encrypt the passed-in bytes. |
|
|
|
This performs PKCS1 encryption of the passed-in data. |
|
|
|
@type bytes: L{bytearray} of unsigned bytes |
|
@param bytes: The value which will be encrypted. |
|
|
|
@rtype: L{bytearray} of unsigned bytes. |
|
@return: A PKCS1 encryption of the passed-in data. |
|
""" |
|
paddedBytes = self._addPKCS1Padding(bytes, 2) |
|
m = bytesToNumber(paddedBytes) |
|
if m >= self.n: |
|
raise ValueError() |
|
c = self._rawPublicKeyOp(m) |
|
encBytes = numberToByteArray(c, numBytes(self.n)) |
|
return encBytes |
|
|
|
def decrypt(self, encBytes): |
|
"""Decrypt the passed-in bytes. |
|
|
|
This requires the key to have a private component. It performs |
|
PKCS1 decryption of the passed-in data. |
|
|
|
@type encBytes: L{bytearray} of unsigned bytes |
|
@param encBytes: The value which will be decrypted. |
|
|
|
@rtype: L{bytearray} of unsigned bytes or None. |
|
@return: A PKCS1 decryption of the passed-in data or None if |
|
the data is not properly formatted. |
|
""" |
|
if not self.hasPrivateKey(): |
|
raise AssertionError() |
|
if len(encBytes) != numBytes(self.n): |
|
return None |
|
c = bytesToNumber(encBytes) |
|
if c >= self.n: |
|
return None |
|
m = self._rawPrivateKeyOp(c) |
|
decBytes = numberToByteArray(m, numBytes(self.n)) |
|
#Check first two bytes |
|
if decBytes[0] != 0 or decBytes[1] != 2: |
|
return None |
|
#Scan through for zero separator |
|
for x in range(1, len(decBytes)-1): |
|
if decBytes[x]== 0: |
|
break |
|
else: |
|
return None |
|
return decBytes[x+1:] #Return everything after the separator |
|
|
|
|
|
|
|
|
|
# ************************************************************************** |
|
# Helper Functions for RSA Keys |
|
# ************************************************************************** |
|
|
|
def _addPKCS1SHA1Prefix(self, bytes, withNULL=True): |
|
# There is a long history of confusion over whether the SHA1 |
|
# algorithmIdentifier should be encoded with a NULL parameter or |
|
# with the parameter omitted. While the original intention was |
|
# apparently to omit it, many toolkits went the other way. TLS 1.2 |
|
# specifies the NULL should be included, and this behavior is also |
|
# mandated in recent versions of PKCS #1, and is what tlslite has |
|
# always implemented. Anyways, verification code should probably |
|
# accept both. However, nothing uses this code yet, so this is |
|
# all fairly moot. |
|
if not withNULL: |
|
prefixBytes = bytearray(\ |
|
[0x30,0x1f,0x30,0x07,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x04,0x14]) |
|
else: |
|
prefixBytes = bytearray(\ |
|
[0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14]) |
|
prefixedBytes = prefixBytes + bytes |
|
return prefixedBytes |
|
|
|
def _addPKCS1Padding(self, bytes, blockType): |
|
padLength = (numBytes(self.n) - (len(bytes)+3)) |
|
if blockType == 1: #Signature padding |
|
pad = [0xFF] * padLength |
|
elif blockType == 2: #Encryption padding |
|
pad = bytearray(0) |
|
while len(pad) < padLength: |
|
padBytes = getRandomBytes(padLength * 2) |
|
pad = [b for b in padBytes if b != 0] |
|
pad = pad[:padLength] |
|
else: |
|
raise AssertionError() |
|
|
|
padding = bytearray([0,blockType] + pad + [0]) |
|
paddedBytes = padding + bytes |
|
return paddedBytes |
|
|
|
|
|
|
|
|
|
def _rawPrivateKeyOp(self, m): |
|
#Create blinding values, on the first pass: |
|
if not self.blinder: |
|
self.unblinder = getRandomNumber(2, self.n) |
|
self.blinder = powMod(invMod(self.unblinder, self.n), self.e, |
|
self.n) |
|
|
|
#Blind the input |
|
m = (m * self.blinder) % self.n |
|
|
|
#Perform the RSA operation |
|
c = self._rawPrivateKeyOpHelper(m) |
|
|
|
#Unblind the output |
|
c = (c * self.unblinder) % self.n |
|
|
|
#Update blinding values |
|
self.blinder = (self.blinder * self.blinder) % self.n |
|
self.unblinder = (self.unblinder * self.unblinder) % self.n |
|
|
|
#Return the output |
|
return c |
|
|
|
|
|
def _rawPrivateKeyOpHelper(self, m): |
|
#Non-CRT version |
|
#c = powMod(m, self.d, self.n) |
|
|
|
#CRT version (~3x faster) |
|
s1 = powMod(m, self.dP, self.p) |
|
s2 = powMod(m, self.dQ, self.q) |
|
h = ((s1 - s2) * self.qInv) % self.p |
|
c = s2 + self.q * h |
|
return c |
|
|
|
def _rawPublicKeyOp(self, c): |
|
m = powMod(c, self.e, self.n) |
|
return m |
|
|
|
def acceptsPassword(self): |
|
return False |
|
|
|
def generate(bits): |
|
key = RSAKey() |
|
p = getRandomPrime(bits//2, False) |
|
q = getRandomPrime(bits//2, False) |
|
t = lcm(p-1, q-1) |
|
key.n = p * q |
|
key.e = 65537 |
|
key.d = invMod(key.e, t) |
|
key.p = p |
|
key.q = q |
|
key.dP = key.d % (p-1) |
|
key.dQ = key.d % (q-1) |
|
key.qInv = invMod(q, p) |
|
return key |
|
generate = staticmethod(generate)
|
|
|